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Preface

This volume contains the preliminary proceedings of the 15th International
Workshop on Rewriting Logic and Its Applications (WRLA 2024).

Rewriting logic is a natural model of computation and an expressive semantic
framework for concurrency, parallelism, communication, and interaction. It can
be used to specify and verify a wide range of systems with their desired prop-
erties, and define domain specific languages in various application fields. It also
has good properties as a metalogical framework for representing logics. Over the
years, several languages based on rewriting logic have been designed and imple-
mented. The aim of the workshop is to bring together researchers with a common
interest in rewriting logic and its applications, and to give them the opportu-
nity to present their recent work, discuss future research directions, and exchange
ideas. The previous meetings were held in Asilomar (USA) 1996, Pont-à-Mousson
(France) 1998, Kanazawa (Japan) 2000, Pisa (Italy) 2002, Barcelona (Spain)
2004, Vienna (Austria) 2006, Budapest (Hungary) 2008, Paphos (Cyprus) 2010,
Tallinn (Estonia) 2012, Grenoble (France) 2014, Eindhoven (Netherlands) 2016,
Thessaloniki (Greece) 2018, online 2020 (during Covid-19), and Munich (Ger-
many) 2022.

WRLA 2024 was held on April 6–7, 2024, in Luxembourg City, Luxembourg,
as a satellite event of the European Joint Conferences on Theory & Practice of
Software (ETAPS 2024). We received 16 submissions; two were withdrawn due to
out of the scope, and one was withdrawn due to out of the submission categories;
each of the remaining (13 submissions) was reviewed by at least three program
committee members. After an extensive discussion, the program committee de-
cided to accept 13 papers for presentation at the workshop. The program of
WRLA 2024 consisted of 13 paper presentations and five invited tutorials. The
preliminary proceedings includes the five invited tutorial abstracts as well as the
13 papers (eight regular papers, three tool papers, and two education papers). A
selection of the papers accepted for presentation will appear in the proceedings
that will be published in the Springer LNCS series, following the tradition of
previous meetings in this series.

We sincerely thank all the authors of papers submitted to the workshop, and
the invited speakers for kindly accepting to contribute to WRLA 2024. We are
grateful to the members of the program committee and the additonal reviewers
for their careful work in the review process. We also thank the members of the
WRLA steering committee for their valuable suggestions. Finally, we express our
gratitude to all members of the local organization of ETAPS 2024, whose work
has made the workshop possible.

April, 2024 Narciso Mart́ı-Oliet
Kazuhiro Ogata
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José Meseguer

Equivalence Checking of Quantum Circuits Based on Dirac Notation in
Maude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Canh Minh Do and Kazuhiro Ogata

Unified Opinion Dynamic Modeling as Concurrent Set Relations in
Rewriting Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Carlos Olarte, Carlos Ramirez, Camilo Rocha and Frank Valencia

Verifying Invariants by Deductive Model Checking . . . . . . . . . . . . . . . . . . . . 63
Kyungmin Bae, Santiago Escobar, Raúl López-Rueda, Jose Meseguer
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Teaching Functional Programming and Program Verification in
CafeOBJ at JAIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Kazuhiro Ogata

v



Program Committee

Erika Abraham RWTH Aachen, Germany
Kyungmin Bae POSTECH, Korea
Canh Minh Do JAIST, Japan
Francisco Durán University of Málaga, Spain
Santiago Escobar Universitat Politècnica de València, Spain
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Invited Tutorials

1. New Advances in Maude 3.4
by Francisco Durán, University of Málaga, Spain.
Maude is a High-Performance Logical Framework providing specification,
programming, and verification of systems written in Rewriting Logic. This
tutorial will report on the new features available in Maude 3.4.

2. NuITP: A New Theorem Prover for Maude Specifications
by Francisco Durán, University of Málaga, Spain.
NuITP is an inductive theorem prover for Maude equational specifications
that combines powerful state-of-the-art techniques such as narrowing, equal-
ity predicates, constructor variant unification, order-sorted congruence clo-
sure, ordered rewriting, strategy-based rewriting, and several others in order
to reason about Maude equational programs. This tutorial will introduce the
main features of the tool through various examples.

3. The CafeInMaude Tool Set
by Adrián Riesco, Universidad Complutense de Madrid, Spain.
CafeOBJ is a specification language that has been used for verifying a wide
variety of systems. In recent years, CafeInMaude, a CafeOBJ interpreter im-
plemented in Maude, has served as the underlying platform for developing
various formal tools to enhance the verification experience. Specifically, we
have implemented: (i) the CafeInMaude Proof Assistant (CiMPA), an induc-
tive theorem prover for CafeOBJ specifications; (ii) the CafeInMaude Proof
Generator (CiMPG), which generates CiMPA scripts from proof scores; and
(iii) the CafeInMaude Proof Generator & Fixer-Upper (CiMPG+F), which
generates CiMPA scripts from scratch. We summarize the main features of
these tools, the benchmarks used to evaluate them, and their future chal-
lenges.

4. Design and Validation of Cloud Storage Systems Using Maude
by Peter Ölveczky, University of Oslo, Norway.
Today’s large cloud-based applications (e.g., Gmail, Facebook, etc.) store
and manipulate enormous amounts of data, that, furthermore, must be avail-
able all the time. In addition, such applications must be both correct and
have high performance.
To deal with large amounts of data while offering high availability and
throughput and low latency, cloud computing systems rely on distributed,
partitioned, and replicated data stores. Such cloud storage systems are com-
plex software artifacts that are very hard to design, analyze, and implement.
I argue that Maude, together with a statistical model checker such as PVeStA,
should be a suitable tool to model and formally analyze both the correctness
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and the performance of complex cloud storage designs early in the develop-
ment process. This is not only useful to arrive at correct designs, but also to
very early compare the expected performance of different design choices.
This talk summarizes work done in the context of UIUC’s Center for Assured
Cloud Computing to apply Maude to a wide range of state-of-the-art cloud
transaction systems, such as Apache Cassandra, Google’s Megastore, UC
Berkeley’s RAMP transactions, and variations of these. I discuss how the
model-based performance estimates relate to real implementations, and also
how a correct design can be automatically transformed into a correct-by-
construction distributed implementation that can execute real workloads
(e.g., YCSB workloads).
Finally, I briefly summarize the experiences of the use of a different formal
method for similar purposes by engineers at Amazon Web Services.

5. Formal Model Engineering of Distributed Cyber-Physical Systems in AADL
Using Maude
by Kyungmin Bae, Pohang University of Science and Technology, South
Korea.
Formal model engineering, equipping industrial modeling tools with auto-
matic formal analysis capabilities, is a promising way of integrating for-
mal methods into the model development process. However, supporting for-
mal model engineering for cyber-physical systems (CPSs) introduces sev-
eral challenges. These include the high expressiveness of industrial modeling
languages, the difficulty of exhaustive model-checking analysis due to asyn-
chronous behaviors, and the intricate mix of advanced control programs with
continuous behaviors typical in many CPSs.
This talk outlines our approach to supporting efficient formal model en-
gineering for synchronous CPS designs using the industrial CPS modeling
standard AADL. We have identified a suitable sublanguage of AADL, called
Synchronous AADL, that can naturally define the synchronous designs of
CPSs, including those with continuous behaviors. We have defined the for-
mal semantics of Synchronous AADL in rewriting logic and developed the
HybridSynchAADL tool, an extension of the OSATE tool environment for
AADL with automatic formal analysis capabilities via Maude and SMT solv-
ing.
Our approach effectively addresses the challenges by leveraging the expres-
sive power of Maude for control programs, integrating Maude and SMT
solving for analyzing continuous behaviors, and focusing on synchronous de-
signs to enhance analysis efficiency. Additionally, we show how synchronizers,
such as PALS, TTA, and MSYNC, can verify the correctness of distributed
CPS implementations based on their synchronous designs. We summarize
our experiences on applications such as industrial avionics control systems,
airplane turning algorithms, and collaborating drones.
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Equivalence, and Property Internalization
and Preservation for Equational Programs

José Meseguer

University of Illinois at Urbana-Champaign, USA

Abstract. An equational program is an equational theory E “ pΣ,Eq

whose equations, oriented as rewrite rules E⃗, are ground convergent. Its
properties are the inductive theorems of the initial algebra TΣ{E defined
by pΣ,Eq. Since programs are structured in module hierarchies, check-
able syntactic conditions are given to preserve program properties up
and/or down such hierarchies. Two equational programs E “ pΣ,Eq and
E 1

“ pΣ,E1
q are equivalent iff they define the same computable func-

tions on the same algebraic data types. Succinct conditions to verify E
and E 1 equivalent are given. A useful internalization method to extend
an equational program E into an equivalent one by adding new rewrite
rules or structural axioms that are inductive theorems of E is also given.
This method can make proofs of program properties simpler and shorter,
and offers a new way to prove equational theories ground convergent.

1 Introduction

Equational programming is a declarative, functional programming paradigm
where programs are equational theories E “ pΣ,Eq whose equations, oriented as

rewrite rules E⃗, are ground confluent, thus ensuring determinism, i.e., a unique
result if the program terminates. Reasoning about equational program proper-
ties is much easier than doing so for imperative programs, because such prop-
erties are the first-order formulas valid in the initial algebra TΣ{E defined by

pΣ,Eq or, assuming the rules E⃗ are terminating (which I will do throughout),
its isomorphic canonical term algebra CΣ{E⃗ . The expressiveness of equational

programs is greatly enhanced by writing them in an equational logic supporting
types and subtypes. In this paper I assume that they are order-sorted equational
theories [10], the logic chosen by the OBJ [11], CafeOBJ [8] and Maude [4] lan-
guages, which can be further extended to membership equational logic (MEL)
[17]. Expressiveness can be further increased by: (i) supporting rewriting modulo
structural axioms like associativity and/or commutativity and/or unit element;
(ii) supporting conditional equations; (iii) supporting parametric polymorphism
through parameterized theories; (iv) exploiting the fact that MEL and its order-
sorted sublogic are reflective [1]; and (v) supporting symbolic computation with
logical variables. Maude supports all features (i)–(v).

I present new concepts, results and techniques to make the verification of
order-sorted equational programs modulo structural axioms more modular, suc-
cinct and reusable. After some preliminaries in §2, this is done as follows:
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1. In §3 I study how equational program properties can be preserved up and/or
down program module hierarchies, and provide checkable, syntactic condi-
tions ensuring the correctness of such property preservations.

2. In §4 I propose a natural notion of equational program equivalence. Equa-
tional logic is a very high-level language for defining recursive functions
between user-definable algebraic data types. An equational program E “

pΣ,Eq is, simultaneously, an algorithm for defining and computing with
recursive functions for the function symbols in Σ, and a definition of the
computable data types of their domains and ranges. The most obvious defi-
nition of program equivalence between E and E 1 is that they define the same
recursive functions on the same algebraic data types. I give succinct con-
ditions for verifying equational program equivalence by inductive theorem
proving, and to preserve program equivalence under reducts.

3. In §5 I propose the notion of internalization of equations G whose conjunc-
tion is an inductive theorem of an equational program E as new rewrite rules
or structural axioms that, when added to (“internalized in”) E , give rise to
a new equational program equivalent to E ; and I give succinct conditions
enabling such internalizations. This gives rise to an internalize and conquer
methodology to build long chains of program equivalences, and to make triv-
ial the proofs of equivalence for other programs that can be “interpolated”
within such chains. I show how this method, which is supported by Maude’s
NuITP inductive theorem prover [3], can make inductive proofs of equa-
tional program properties simpler and shorter, and provides a new method
for proving that an equational theory E is ground confluent.

4. In §6 I discuss related work and present some conclusions. Proofs of all
theorems and lemmas are included in Appendix A. All NuITP proof scripts
can be found in Appendix B.

To the best of my knowledge, except for the folklore Theorems 1 and 3, all other
theorems and lemmas are new.

2 Preliminaries

I assume familiarity with the notions of an order-sorted signature Σ on a poset
of sorts pS,ďq, an order-sorted Σ-algebra A, and the term Σ-algebras TΣ and
TΣpXq for X an S-sorted set of variables. I also assume familiarity with the
notions of: (i) Σ-homomorphism h : A Ñ B between Σ-algebras A and B, so
that Σ-algebras and Σ-homomorphisms form a category OSAlgΣ ; (ii) order-
sorted (i.e., sort-preserving) substitution θ, its domain dompθq and range ranpθq,
and its application tθ to a term t; (iii) preregular order-sorted signature Σ, i.e.,
a signature such that each term t has a least sort, denoted lsptq; (iv) the set
pS “ S{pě Y ďq` of connected components of a poset pS,ďq viewed as a DAG;
(v) operators f : s1 . . . sn Ñ s and f : s1

1 . . . s
1
n Ñ s1 in Σ are called subsort-

overloaded iff rs1s “ rs1
1s, . . . , rsns “ rs1

ns, rss “ rs1s, where rs2s P pS denotes
the connected component of s P S; (vi) for A a Σ-algebra, the sets As of its
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elements of sort s P S and for each rss P pS the set Arss “
Ť

s1Prss As; (vii) the
order-sorted equational deduction relation E $ u “ v and its associated E-
equality relation “E ; (viii) the initial algebra TΣ{E associated to an equational
theory pΣ,Eq, where, for each s P S, TΣ{E,s “ trts P TΣ,rss{“E | rts XTΣ,s “ Hu,
and for each f : s1 . . . sn Ñ s P Σ, fTΣ{E

prt1s, . . . , rtnsq “ rfpt1
1, . . . , t

1
nqs, where

t1
i P rtisXTΣ,si , 1 ď i ď n; (ix) E-unifiers of an equation u “ v, i.e., substitutions
θ such that uθ “E vθ, and complete set Unif Epu “ vq of E-unifiers; and (x)
the satisfaction relation A |ù φ of a first-order Σ-formula φ by a Σ-algebra A. I
furthermore assume that all signatures Σ have non-empty sorts, i.e., TΣ,s “ H

for each s P S. rA Ñ Bs denotes the S-sorted functions from A to B. These
notions are explained in [17, 10, 18]. The material below is adapted from [18, 14].

Convergent Theories and Sufficient Completeness. Given an order-sorted
equational theory E “ pΣ,E Y Bq, where B is a collection of associativity
pAq and/or commutativity pCq and/or unit element pUq axioms and Σ is B-

preregular,1 we can associate to it a corresponding rewrite theory [16] E⃗ “

pΣ,B, E⃗q by orienting the equations E as left-to-right rewrite rules. That is,
each pu “ vq P E is transformed into a rewrite rule u Ñ v. For simplicity
we recall here the case of unconditional equations. Since in this work we will
consider conditional theories E⃗ , we refer to [14] for full details on the general

definition of convergent theory. The rewrite theory E⃗ reduces the complex bidi-
rectional reasoning with equations to the much simpler unidirectional reasoning
with rules under suitable assumptions. We assume familiarity with the notion
of subterm t|p of t at a term position p and of term replacement trwsp of t|p by
w at position p (see, e.g., [2]). The rewrite relation t ÑE⃗,B t1 holds iff there is a

subterm t|p of t, a rule pu Ñ vq P E⃗ and a substitution θ such that uθ “B t|p
and t1 “ trvθsp. We denote by Ñ˚

E⃗,B
the reflexive-transitive closure of ÑE⃗,B .

For E⃗ unconditional, the convergence requirements are as follows (see [14] for E⃗
conditional): (i) varspvq Ď varspuq; (ii) sort-decreasingness: for each substitution
θ, lspuθq ě lspvθq; (iii) strict B-coherence: if t1 ÑE⃗,B t1

1 and t1 “B t2 then there

exists t2 ÑE⃗,B t1
2 with t1

1 “B t1
2; (iv) confluence (resp. ground confluence) mod-

ulo B: for each term t (resp. ground term t) if t Ñ˚

E⃗,B
v1 and t Ñ˚

E⃗,B
v2, then

there exist rewrite sequences v1 Ñ˚

E⃗,B
w1 and v2 Ñ˚

E⃗,B
w2 such that w1 “B w2;

(v) termination: the relation ÑE⃗,B is well-founded (for E⃗ conditional, we require

operational termination [14]). If E⃗ satisfies conditions (i)–(v) (resp. the same, but
(iv) weakened to ground confluence modulo B), then it is called convergent (resp.
ground convergent). The key point is that then, given a term (resp. ground term)
t, all terminating rewrite sequences t Ñ˚

E⃗,B
w end in a term w, denoted t!E⃗ , that

is unique up to B-equality, and its called t’s canonical form. Ground convergence
implies three major results: (1) for any ground terms t, t1 we have t “EYB t1 iff

1 A signature Σ is B-preregular if it is preregular and for each rts P TΣ{B there is an
effectively determined least sort s such that rts P TΣ{B,s (if B has only A and/or C
axioms, this is the least sort of any t1

P rts). This property is checked by Maude.
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t!E⃗ “B t1!E⃗ , (2) the B-equivalence classes of canonical forms are the elements of
the canonical term algebra CΣ{E⃗,B , where for each f : s1 . . . sn Ñ s in Σ and

B-equivalence classes of canonical terms rt1s, . . . , rtns with lsptiq ď si the oper-
ation fCΣ{E,B

is defined by the identity: fCΣ{E⃗,B
prt1s . . . rtnsq “ rfpt1 . . . tnq!E⃗ s,

and (3) we have an isomorphism TΣ{EYB – CΣ{E⃗,B .

A ground convergent rewrite theory E⃗ “ pΣ,B, E⃗q is called sufficiently complete
with respect to a subsignature Ω, whose operators are called constructors, iff for
each ground Σ-term t, t!E⃗ P TΩ . Define Ω` as Ω’s subsort-overloaded closure.
That is, for any c : s1 . . . sn Ñ s P Σ, c : s1 . . . sn Ñ s P Ω` iff

Dc : s1
1 . . . s

1
n Ñ s1 P Ω s.t. rs1s “ rs1

1s, . . . , rsns “ rs1
ns, rss “ rs1s.

Note that Ω` splits Σ into a disjoint union Σ “ ∆ Z Ω` with ∆ “ ΣzΩ`,
with no subsort overloading possible between function symbols in ∆ and in Ω`.
For E⃗ “ pΣ,B, E⃗q sufficiently complete w.r.t. Ω, a ground convergent rewrite

subtheory pΩ`, BΩ` , E⃗Ω` q Ď pΣ,B, E⃗q is called a constructor subspecification

iff2 CΣ{E⃗,B |Ω` – CΩ`{E⃗Ω` ,BΩ`
. If E⃗Ω` is such that each u P TΩ is in E⃗Ω` , BΩ` -

normal form, Ω is called a signature of free constructors modulo axioms BΩ .

Example 1. The Maude functional module:

fmod NAT+AC is

sorts Natural NzNatural . subsort NzNatural < Natural .

op 0 : -> Natural [ctor] .

op 1 : -> NzNatural [ctor] .

op _+_ : Natural Natural -> Natural [assoc comm] .

op _+_ : NzNatural NzNatural -> NzNatural [ctor assoc comm] .

eq N:Natural + 0 = N .

endfm

with signature Ω` and subsignature Ω Ă Ω` the symbols with the ctor at-
tribute, has Ω as signature of free constructors modulo AC. The free constructor
modulo AC Ω-terms are: 0, 1, and 1` k. . . `1, k ą 1.

3 Modular Preservation of Program Properties

Not every order-sorted equational theory E “ pΣ,E YBq is suitable as an equa-
tional program executable by term rewriting. Call E “ pΣ,EYBq admissible (as

a program) iff E⃗ “ pΣ,B, E⃗q is ground convergent. It is useful to make explicit

the constructor subtheory pΩ`, BΩ` , E⃗Ω` q Ď pΣ,B, E⃗q on which E is sufficiently
complete w.r.t. Ω Ď Ω`. Talk about the formal properties of an equational pro-
gram E “ pΣ,E YBq is meaningless if no formal semantics has been given to it.

Since E⃗ is ground convergent, I propose as its semantics the Σ-algebra CΣ{E⃗,B .

2 For a Σ-algebra A and a subsignature Σ1 with same poset of sorts, the reduct A|Σ1

is the Σ1-algebra with same sorts as A and same operations fA as A for each f P Σ1.
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This semantics is very precise, considerably more so than a vanilla-flavored “ini-
tial algebra semantics,” because CΣ{E⃗,B specifies the computable data types, and

the computable functions defined by the functional program E . Technical details
become simpler if (as I shall do henceforth) we assume that in B “ B∆ Z BΩ`

the unit element axioms of B only occur in BΩ` , so that all axioms in B∆ are
associative and/or commutative. Likewise, the rules E⃗ split as a disjoint union

E⃗ “ E⃗∆ Z E⃗Ω` , where I shall always assume that the rules in E⃗∆ have the form
fpu1, . . . , unq Ñ v if φ for some f P ∆. Our assumption on B∆ implies that the
Ω`-algebra isomorphism CΣ{E⃗,B |Ω` – CΩ`{E⃗Ω` ,BΩ`

becomes the Ω`-algebra

equality CΣ{E⃗,B |Ω` “ CΩ`{E⃗Ω` ,BΩ`
. Since CΣ{E⃗,B |Ω` “ CΩ`{E⃗Ω` ,BΩ`

, the

data types of the functional program E are obviously the computable data types
tCΩ`{E⃗Ω` ,BΩ` ,susPS whose elements are BΩ` -equivalence classes of construc-

tor terms in E⃗Ω` , BΩ` -canonical form. For each f : s1 . . . sn Ñ s in Σ, the
function defined by E for f is obviously the computable function fCΣ{E⃗,B

:

CΩ`{E⃗Ω` ,BΩ` ,s1
ˆ . . . ˆ CΩ`{E⃗Ω` ,BΩ` ,sn

Ñ CΩ`{E⃗Ω` ,BΩ` ,s.

The above equational program semantics provides an immediate answer to the
question: What are the formal properties of the functional equational program
E? Obviously, those of the family of computable functions defined by E , which
can be naturally expressed as first-order Σ-formulas φ. Therefore, program E
satisfies property φ iff, by definition, CΣ{E⃗,B |ù φ. Since TΣ{EYB – CΣ{E⃗,B , φ

is the property of an initial algebra, and therefore an inductive property [19].
Therefore, equational program verification is just inductive theorem proving.
Furthermore, I will show in §4 and §5 that inductive theorem proving allows
verifying, not just properties of an equational program E , but also equivalence
between two equational programs E and E 1.

In this section I focus on modular preservation of equational program proper-
ties. Programs should be structured in module hierarchies, where each link in
such a hierarchy is an equational theory inclusion E Ď E 1 and, more precisely, a
rewrite theory inclusion E⃗ “ pΣ,B, E⃗q Ď pΣ1, B1, E⃗1q “ E⃗ 1. Any such inclusion
defines a unique Σ-homomorphism h : CΣ{E⃗,B Ñ CΣ1{E⃗1,B1 |Σ . This is because

B Ď B1 and E Ď E1, and therefore CΣ1{E⃗1,B1 |Σ |ù E Y B, so that h is the

unique Σ-homomorphism from the initial E-algebra CΣ{E⃗,B . Modular preserva-

tion of equational program properties is thus a special case of the well-known
preservation of first-order formulas under various kinds of homomorphisms. I will
focus on three kinds of module inclusions, specified in Maude with the respective
keywords extending, generated-by and protecting. In the argot of algebraic
specifications they characterize module inclusions where the supermodule cre-
ates, respectively, “no confusion,” “no junk,” and “no junk and no confusion”
on the submodule. Their meanings for a module inclusion E⃗ Ď E⃗ 1 is that the
unique Σ-homomorphism h : CΣ{E⃗,B Ñ CΣ1{E⃗1,B1 |Σ is, respectively, injective,

surjective, or bijective. By “injective,” resp. “surjective,” resp. “bijective,” I mean
that for each sort s in Σ the function hs is so. Regarding program properties, I
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shall restrict myself to quantifier-free (QF) formulas φ or, equivalently, to their
universal closures @φ. The respective formula preservation results are:

Theorem 1. (Up and Down). Let E⃗ Ď E⃗ 1 be an inclusion of admissible equa-
tional programs where the signature Σ of E is such that each connected component
rss of its poset of sorts pS,ăq has a top element. Then,

1. Down: If the inclusion is extending, then for any QF Σ-formula φ, CΣ1{E⃗1,B1 |ù

φ ñ CΣ{E⃗,B |ù φ.

2. Up: If the inclusion is generated-by, then for any positive3 QF formula
φ, CΣ{E⃗,B |ù φ ñ CΣ1{E⃗1,B1 |ù φ.

3. Up and Down: If the inclusion is protecting, then for any QF Σ-formula
φ, CΣ1{E⃗1,B1 |ù φ ô CΣ{E⃗,B |ù φ.

The above theorem follows from well-known results in Model Theory (see, e.g.,
§2.4 in [13]) under the above assumption on Σ. Down follows from the  Los-
Tarski Theorem because CΣ{E⃗,B is isomorphic to a Σ-subalgebra of CΣ1{E⃗1,B1 |Σ .

Up follows from Lyndon’s Positivity Theorem. Up and Down follows from
bijective Σ-homomorphisms being isomorphims, which preserve all formulas.
Theorem 1 is useful in equational program verification because it allows reuse
of a property φ proved for one module as a property of a sub- or super-module,
provided appropriate requirements on φ and on the module inclusion hold. But,
of course, property reuse hinges on verifying that a submodule inclusion E⃗ Ď E⃗ 1 is
actually extending, resp. generated-by, resp. protecting. Before addressing
this issue, let me first recall the following results from [5].

Given a ground convergent theory E⃗ “ pΣ,B, E⃗q with B any combination of
associativity, commutativity and unit axioms, B decomposes as a disjoint union
B “ BA_C Z U , with BA_C the associativity and/or commutativity axioms
and U the unit axioms. Furthermore, (i) any unit axiom fpx, eq “ x (resp.
fpe, xq “ x) can be oriented as a rule fpx, eq Ñ x, (resp. fpe, xq Ñ x), yielding

a set U⃗ of rules such that pΣ,BA_C , U⃗q is convergent and enjoys the finite
variant property (FVP) [7]; (ii) therefore, for any terms u, v by the Church-Rosser

Theorem, u “B v iff u!U⃗,BA_C
“BA_C

v!U⃗,BA_C
; (iii) E⃗ is semantically equivalent

to the ground convergent theory E⃗U “ pΣ,BA_C , E⃗U Z U⃗q, where E⃗U can be

automatically generated from E⃗ by computing for each l Ñ r in E⃗ the finite set
of variants of its lefthand side l (see [5]); (iv) the ÑE⃗,B , ÑU⃗,BA_C

and ÑE⃗U ,BA_C

relations are related as follows: (iv).1 u ÑE⃗,B v ñ Dv1 s.t. u!U⃗,BA_C
ÑE⃗U ,BA_C

v1 ^ v “B v1, and (iv).2. u!U⃗,BA_C
ÑE⃗U ,BA_C

v1 ñ Dv s.t. u ÑE⃗,B v ^ v “B

v1. The following theorem gives checkable conditions ensuring module inclusions
to be extending, resp. generated-by, resp. protecting. Its proof is given in
Appendix A.

3 By definition, φ is positive iff it is Boolean-equivalent to a QF whose only Boolean
connectives are _ and ^.
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Theorem 2. Let E⃗ “ pΣ,B, E⃗q Ď pΣ1, B1, E⃗1q “ E⃗ 1 be an inclusion of ad-
missible equational theories sufficiently complete w.r.t. Ω, resp. Ω1, satisfies the
assumptions in Theorem 1, and is such that: (i) any subsort-overloaded oper-
ators f : s1 . . . sn Ñ s in Σ and f : s1

1 . . . s
1
n Ñ s1 in Σ1 have the same

axioms in B and in B1, (ii) the corresponding inclusion of constructor sub-

theories E⃗Ω` “ pΩ`, BΩ` , E⃗Ω` q Ď E⃗ 1
Ω1` “ pΩ1`, B1

Ω1` , E⃗1
Ω1` q is such that the

rules in E⃗1
Ω1` are unconditional and ∆ Ď ∆1, and (iii) as noted above, B1

Ω1`

and BΩ` both decompose as disjoint unions B1
Ω1` “ B1

A_C,Ω1` Z UΩ1` and
BΩ` “ BA_C,Ω` Z UΩ` . Then,

1. The inclusion is extending if for any rule l1 Ñ r1 in E⃗1
Ω1`UΩ1`

and for

any sort specialization4 ρ such that lρ is an Ω`-term there is a rule l Ñ r
in E⃗Ω`UΩ`

and a sort specialization τ such that the rules l1ρ Ñ r1ρ and
lτ Ñ rτ are identical.

2. The inclusion is generated-by if (a) @s1 P S1, @s P S, ps1 ă1 sq ñ ps1 P

S ^ s1 ă sq, and (b) for any c : s1
1 . . . s

1
n Ñ s1 in Ω1` such that s1 P S we

must have s1
1, . . . , s

1
n P S and c : s1

1 . . . s
1
n Ñ s1 in Ω`.

3. The inclusion is protecting if it satisfies the conditions in both (1) and (2).

To the best of my knowledge, Theorem 2 is new. It has the advantage of
making the conditions for checking module inclusions to be extending, resp.
generated-by, resp. protecting, purely syntactic and therefore automatable.
This facilitates the reusability of equational program properties afforded by The-
orem 1. It is also very widely applicable, since condition (i) is enforced by OBJ3,
CafeOBJ and Maude on all module inclusions, and condition (ii) on constructor
equations being unconditional is very often satisfied in practice.

Example 2. Consider the following inclusion of Maude equational programs in
which ACU addition is extended to AC multiplication:

fmod NAT+ACU is

sorts Natural NzNatural . subsort NzNatural < Natural .

op 0 : -> Natural [ctor] .

op 1 : -> NzNatural [ctor] .

op _+_ : Natural Natural -> Natural [assoc comm id: 0] .

op _+_ : NzNatural NzNatural -> NzNatural [ctor assoc comm id: 0] .

endfm

fmod NAT+ACU*AC is protecting NAT+ACU .

op _*_ : Natural Natural -> Natural [assoc comm] .

vars N M K : Natural . vars N’ M’ : NzNatural .

eq N * 0 = 0 .

eq N * 1 = N .

eq K * (N’ + M’) = (K * N’) + (K * M’) .

endfm

4 A sort specialization is a bijective substitution ρ “ tx1 ÞÑ x1
1, . . . xn ÞÑ x1

nu such that
if xi has sort si, then x1

i has sort s
1
i with si ě s1

i, 1 ď i ď n.
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Both NAT+ACU and NAT+ACU*AC are convergent, and the subsignature Ω of NAT+ACU
specified by the ctor keyword makes both modules sufficiently complete w.r.t.
Ω. We can use Theorem 2 to check that the stated protecting inclusion is in-
deed protecting. Condition (1) holds trivially, since NAT+ACU*AC contains no
new constructors (actually, NAT+ACU is its constructor subspecification). Con-
dition (2) also holds trivially, since both modules share the same constructor
subspecification.

4 Program Equivalence

Before discussing theory and program equivalences I recall a folklore theorem
on initial algebras. For the sake of self-containedness its proof is given in Ap-
pendix A. By definition, the inductive consequence relation pΣ,Eq |ùind Γ holds
between an equational theory pΣ,Eq and a set Γ of first-order Σ-formulas iff
TΣ{E |ù Γ , i.e., if all φ P Γ are inductive theorems of the initial algebra TΣ{E .

Theorem 3. Let pΣ,Eq be an order-sorted equational theory and G a set of
Σ-equations. Then, pΣ,Eq |ùind G iff TΣ{E “ TΣ{EYG.

Inductive Equivalence. Call two equational theories pΣ,Eq and pΣ,E1q induc-
tively equivalent, denoted pΣ,Eq ”ind pΣ,E1q, iff TΣ{E “ TΣ{E1 , and therefore
both have the same inductive theorems. This defines an equivalence relation
between equational theories. Note that, by Theorem 3 and transitivity and sym-
metry of ”ind , pΣ,Eq ”ind pΣ,E1q iff pΣ,Eq |ùind E1 and pΣ,E1q |ùind E.

Program Equivalence. When are two equational programs, i.e., two admis-
sible theories E “ pΣ,E Y Bq and E 1 “ pΣ,E1 Y B1q, both sufficiently com-
plete w.r.t. constructors Ω, equivalent? The most obvious answer is: when they
define the same functions on the same data types, which exactly means that
CΣ{E⃗,B “ CΣ{E⃗1,B1 . This defines an equivalence relation on equational programs

which I call program (semantic) equivalence, denoted E ”sem E 1. Obviously,
E ”sem E 1 implies E ”ind E 1, but the converse implication does not hold in
general. Note that it follows from the very definition of E ”sem E 1 (and also
from the weaker property E ”ind E 1) that programs E and E 1 satisfy exactly the
same properties φ. This simple observation provides what might be called an
horizontal property preservation principle,5 since we can automatically transfer
any inductive theorems proved for E to E 1 and conversely. The proof of Lemma
1 is in Appendix A.

Lemma 1. Let E “ p∆ZΩ`, EYBq and E 1 “ p∆ZΩ`, E1 YB1q be admissible,
sufficiently complete w.r.t. constructors Ω and semantically equivalent; and let
∆0 Ď ∆ be a subsignature closed in ∆ under subsort overloading such that for
all rules fpu1, . . . , unq Ñ v if φ in the subset E⃗∆0 of E⃗∆ (resp. E⃗1

∆0
of E⃗1

∆) such
that f P ∆0, fpu1, . . . , unq, v and the terms in φ are ∆0 Z Ω`-terms. Let B∆0

(resp. B1
∆0

) denote the subset of B∆ (resp. B1
∆) involving a binary f P ∆0. Then,

5 Horizontal, since no submodule inclusions need exist between E and E 1.
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p∆0 ZΩ`, E∆0
YEΩ`

YB∆0
YBΩ` q and p∆0 ZΩ`, E1

∆0
YE1

Ω`
YB1

∆0
YB1

Ω` q

are both admissible, sufficiently complete w.r.t. Ω and semantically equivalent.

Since Alan Turing, the (undecidable) problem of verifying program equiva-
lence has been a central issue in program verification. How can we verify that
two equational programs E and E 1 are semantically equivalent? For the sake of
a simpler exposition I answer this question in the theorem below, whose proof
is given in Appendix A, when the equations in E and E 1 are unconditional. The
general case allowing conditional equations will be treated elsewhere.

Theorem 4. (Program Equivalence). For admissible unconditional equational
programs E “ pΣ,E Y Bq and E 1 “ pΣ,E1 Y B1q sufficiently complete w.r.t. Ω,
resp. Ω1, and with respective constructor subspecifications pΩ`, EΩ` YBΩ` q and
pΩ`, E1

Ω` Y B1
Ω` q, E ”sem E 1 iff:

1. CΩ`{E⃗Ω` ,BΩ`
“ CΩ`{E⃗1

Ω`
,B1

Ω`
, and

2. pΣ,E Y Bq |ùind pE1
∆zE∆q Y pB1

∆zB∆q.

Note the economy of proof afforded by the remarkably asymmetric condition (2)
for checking the symmetric relation ”sem. The user can choose either E or E 1 as
the ground for the inductive proofs in (2), whichever choice makes proofs easier.
Of course, Theorem 4 still leaves open the question of how to verify condition
(1) that CΩ`{E⃗Ω` ,BΩ`

“ CΩ`{E⃗1

Ω`
,B1

Ω`
. This question is answered in Theorem

7. But in the very common case when pΩ`, EΩ` Y BΩ` q “ pΩ`, E1
Ω` Y B1

Ω` q

(1) holds trivially and only (2) needs to be checked.

Example 3. This example continues Example 2 by considering a different defini-
tion of natural number addition and multiplication in which addition is defined
as string (associative) concatenation (indeed, as counting with one’s fingers):

fmod NAT+AU is

sorts Natural NzNatural . subsort NzNatural < Natural .

op 0 : -> Natural [ctor] .

op 1 : -> NzNatural [ctor] .

op _+_ : Natural Natural -> Natural [assoc id: 0] .

op _+_ : NzNatural NzNatural -> NzNatural [ctor assoc id: 0] .

endfm

fmod NAT+AU* is protecting NAT+AU .

op _*_ : Natural Natural -> Natural .

vars N M K : Natural . var N’ : NzNatural .

eq N * 0 = 0 .

eq N * 1 = N .

eq K * (N’ + 1) = K + (K * N’) .

endfm

By Theorem 4, NAT+ACU*AC ”sem NAT+AU* holds iff we prove: (1) NAT+ACU ”sem

NAT+AU, and (2) NAT+ACU*AC |ù K ˚ pN 1 ` 1q “ K ` pK ˚ N 1q. (1) is proved in
Example 4. The NuITP script proving (2) can be found in Appendix B.
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5 Internalizing Program Properties

Program properties that are equations which can be added to the program as
terminating rules or as axioms extend such a program to a semantically equiva-
lent one by a process that I call internalization. Theorem 5’s proof is in Appendix
A.

Theorem 5. (Rule Internalization). Let pΣ,E Y Bq be an admissible equa-
tional program sufficiently complere w.r.t. Ω and with constructor subspecifi-
cation pΩ`, EΩ` Y BΩ` q; and let G be a finite set of Σ-equations such that: (i)
pΣ,E YBq |ùind G, (ii) the equations G can be oriented as sort-decreasing rules

G⃗ of either the form fpu1, . . . , unq Ñ w with f in ΣzΩ` or u Ñ v, with u, v Ω`-

terms, and (iii) the rules E⃗ Y G⃗ are terminating modulo B. Then pΣ,B, E⃗ Y G⃗q

is admissible and pΣ,E Y Bq ”sem pΣ,E Y G Y Bq.

The proof of Theorem 6 below can be found in Appendix A.

Theorem 6. (Axiom Internalization). Let pΣ,E Y Bq be an admissible equa-
tional program sufficiently complete w.r.t. Ω and with constructor subspecifica-
tion pΩ`, EΩ` Y BΩ` q, and let B1 “ B1

∆ Z B1
Ω` be a collection of associative

and/or commutative and/or unit axioms, with B1
∆ associative and/or commuta-

tive (A _ C) ∆-axioms (resp. B1
Ω` Ω`-axioms), both general enough to impose

B1
∆ axioms for all binary operators f P ∆ subsort-overloaded with those ap-

pearing in B1
∆ (resp. all binary operators c P Ω` subsort-overloaded with those

appearing in BΩ`), and making Σ BYB1-preregular. If pΣ,EYBq |ùind B1 and

the rules E⃗ are terminating modulo B Y B1, then pΣ,E Y B Y B1q is admissible
and pΣ,E Y Bq ”sem pΣ,E Y B Y B1q.

We can use Theorems 5 and 6 to give, in the theorem below (whose proof can
be found in Appendix A), conditions ensuring CΩ`{E⃗Ω` ,BΩ`

“ CΩ`{E⃗1

Ω`
,B1

Ω`
for

admissible constructor specifications pΩ`, EΩ` Y BΩ` q and pΩ`, E1
Ω` Y B1

Ω` q.
This yields a proof method to verify Condition (1) in Theorem 4.

Theorem 7. (Constructor Program Equivalence). Let pΩ`, EΩ` Y BΩ` q and
pΩ`, E1

Ω` Y B1
Ω` q be admissible constructor specifications such that:

1. Ω` is BΩ` Y B1
Ω`-preregular and the rules E⃗Ω` Y E⃗1

Ω` are terminating
modulo BΩ` Y B1

Ω` .
2. pΩ`, EΩ` Y BΩ` q |ùind B1

Ω` zBΩ` and pΩ`, E1
Ω` Y B1

Ω` q |ùind BΩ` zB1
Ω` .

3. pΩ`, EΩ` YBΩ` YB1
Ω` q |ùind E1

Ω` zEΩ` and pΩ`, E1
Ω` YBΩ` YB1

Ω` q |ùind

EΩ` zE1
Ω` .

Then CΩ`{E⃗Ω` ,BΩ`
“ CΩ`{E⃗1

Ω`
,B1

Ω`
.

Example 4. (Example 3 continued). The only pending issue to prove the equiv-
alence of natural arithmetic programs in Example 3 was the constructor pro-
gram equivalence NAT+ACU ”sem NAT+AU. Since there are no rewrite rules in
either NAT+ACU or NAT+AU, NAT+ACU is ACU -preregular, and AUzACU “ H,
by Theorem 7, to show NAT+ACU ”sem NAT+AU we only need to prove NAT+AU

|ùind N ` M “ M ` N . The NuITP proof script can be found in Appendix B.

10



The following theorem, whose proof is given in Appendix A, shows that if
E Ď E2 and E ”sem E2, then, any E 1 such that E Ď E 1 Ď E2 is, under mild
conditions, admissible and semantically equivalent to both E and E2.

Theorem 8. (Module Interpolation). Let E “ pΣ,E Z Bq and E2 “ pΣ,E Z

E1 Z E2 Z B Z B1 Z B2q be admissible theories with constructors Ω such that
E ”sem E2. Then, any E 1 “ pΣ,E Z E1 Z B Z B1q with B1 “ B1∆ Z B1Ω`

associative and/or commutative and/or unit axioms, with B1∆ A_C ∆-axioms
(resp. B1Ω`

Ω`-axioms), both general enough to impose B1∆ axioms for all
binary operators f P ∆ subsort-overloaded with those appearing in B1∆ (resp.
all binary operators c P Ω` subsort-overloaded with those appearing in B1Ω`

),
is admissible and we have, E ”sem E 1 ”sem E2.

Internalize and Conquer. In inductive theorem proving the verification of
properties for an equational program E is greatly eased by using formula sim-
plification techniques. The most basic such technique is simplification with E ’s
equations, and also with equations already proved as lemmas. Often, a large part
of the proof effort is spent proving lemmas that are equations providing essential
knowledge needed in proving the main goal. There are, however, several diffi-
culties: first, an equation proved as a lemma may fail to be terminating, which
causes looping; second, lemma proving tends to happen in an ad-hoc and by-
need fashion, and in a context of current knowledge that may not be optimal, so
that lemma proving may require significant effort. The end result in interactive
inductive theorem proving can be a tedious proof that is longer than desirable.

These difficulties can be substantially reduced by using Theorems 5 and 6 as
a key part of an inductive theorem proving methodology that I call internalize
and conquer, based on three simple ideas:

1. Think of program properties, not in isolation, but as part of a cluster of
properties.

2. Arrange the properties to be proved in a “low hanging fruit” manner: from
simpler to more complex, in the hope that, as simpler properties get proved,
their accumulated knowledge will have a domino effect in making the proofs
of more complex properties much simpler.

3. Use Theorems 5 and 6 to automatically internalize all the knowledge of
already-proved properties so that, hopefully, no lemmas need to be proved.

Idea (2) is part of the best practice, not just in theorem proving, but in Mathe-
matics, where proofs of complex theorems become trivial if simpler results have
been proved beforehand. The above methodology is at the same time a method
to prove program equivalences, since Theorems 5 and 6 allow us to prove the
equivalence between an equational program E “ pΣ,E Y Bq and a richer, yet
equivalent, program E 1 “ pΣ,E Y E1 Y B Y B1q. What Ideas (1)–(3) help us do
is to arrange the properties B1 YE1 to be proved in order of complexity, and use
Theorems 5 and 6 to incrementally build a chain of program equivalences that
starts in E and ends in E 1. Let us see an example.
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Example 5. Consider the following Maude specification of natural number addi-
tion, multiplication and exponentiation in Peano notation:

fmod NATURAL-ARITH is

sorts Nat NzNat . subsort NzNat < Nat .

op 0 : -> Nat [ctor metadata "1"] .

op s : Nat -> NzNat [ctor metadata "2"] .

op _+_ : Nat Nat -> Nat [metadata "3"] .

op _*_ : Nat Nat -> Nat [metadata "4"] .

op _*_ : NzNat NzNat -> NzNat [metadata "5"] .

op _^_ : NzNat Nat -> NzNat [metadata "6"] .

vars n m k : Nat . vars n’ k’ m’ : NzNat .

eq n + 0 = n .

eq n + s(m) = s(n + m) .

eq n * 0 = 0 .

eq n * s(m) = n + (n * m) .

eq n’ ^ 0 = s(0) .

eq n’ ^ s(m) = n’ * (n’ ^ m) .

endfm

where the metadata attribute is used to define an RPO order among function
symbols. This order can later be used to automatically try to orient equations
proved as inductive properties as terminating rewrite rules. A fundamental clus-
ter of properties one would like to prove about NATURAL-ARITH is that its canoni-
cal term algebra: (i) satisfies the axioms of the theory of commutative semirings,
i.e., it is a commutative monoid under addition with unit 0, a commutative
monoid under multiplication with unit sp0q, and multiplication is distributive
over addition; and (ii) it also satisfies expected exponentiation properties such
as xy`z “ xy ˚xz, xy˚z “ pxyqz, and pxyqz “ pxzqy, with x of sort NzNat and y, z
of sort Nat. Following the internalize and conquer methodology, all these prop-
erties should be arranged in order of complexity: properties of addition before
those of multiplication and these before those of exponentiation. Commutativity
properties for ` and ˚ are known to be harder to prove. Their proofs can be
made considerably simpler if their defining equations, which in NATURAL-ARITH

recurse on their second argument, are proved equivalent to the analogous equa-
tions recursing on the first argument. This suggest the general idea of extending
the cluster of properties to be proved by some auxiliary properties that we sus-
pect would otherwise show up as lemmas to be proved. In Maude’s NuITP
inductive theorem prover [3] the internalization associated to Theorem 5 is sup-
ported by the internalize command, and that associated to Theorem 6 by
the internalize as assoc and internalize as comm commands. The entire
proof of all the above properties can be obtained as an interleaving of NuITP
commands to prove an equation, and internalize commands (including those
for internalizing associativity or commutativity axioms) in such way that each
equational property is proved by a single NuITP command, without any aux-
iliary lemmas. The NuITP proof script can be found in Appendix B.

Proving Ground Convergence Through Internalization. The internalize
and conquer methodology builds a “telescope” of equational programs from E “
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pΣ,E Y Bq to E 1 “ pΣ,E Y E1 Y B Y B1q,

pΣ,EYBq Ă pΣ,EYE1 YBYB1q . . . pΣ,EYEk´1 YBYBk´1q Ă pΣ,EYE1
YBYB1

q

while at the same time proving that all programs in the telescope (or, by the
Module Interpolation Theorem, other programs that could be inserted in the
telescope) are indeed programs, i.e., are ground convergent. Ground convergence
of an equational theory E “ pΣ,E YBq is an inductive property much harder to
prove than convergence, which, assuming termination, is a decidable property for
unconditional programs by checking sort-decreasingness and joinability of critical
pairs.6 The reason is that one needs to reason, not about the initial algebra
TΣ{EYB , but about the initial model TE⃗ of the rewrite theory E⃗ “ pΣ,B, E⃗q,
which requires reasoning inductively about the ÑE⃗,B and ÓE⃗,B relations (see,

e.g., [6]). Internalize and conquer is also a new, incremental methodology to
prove ground convergence, where the inductive reasoning happens, not on TE⃗ ,
but on TΣ{EYB for inductively euivalent E ’s. Let us see an example:

Example 6. Consider the Maude equational program:

fmod NATURAL+C*C is

sorts Nat NzNat . subsort NzNat < Nat .

op 0 : -> Nat [ctor metadata "1"] .

op s : Nat -> NzNat [ctor metadata "2"] .

op _+_ : Nat Nat -> Nat [comm metadata "3"] .

op _*_ : Nat Nat -> Nat [comm metadata "4"] .

op _*_ : NzNat NzNat -> NzNat [comm metadata "5"] .

vars n m k : Nat . vars n’ k’ m’ : NzNat .

eq n + 0 = n .

eq n + s(m) = s(n + m) .

eq n * 0 = 0 .

eq n * s(m) = n + (n * m) .

endfm

It is terminating, but its equations are not confluent. Maude’s Church-Rosser
Checker reports the unjoinable critical pair spN ` pM ` pN ˚ Mqqq “ spM `

pN ` pN ˚ Mqqq. The usual method to prove NATURAL+C*C ground confluent
would be to prove that spN ` pM ` pN ˚ Mqqq Ó spM ` pN ` pN ˚ Mqqq is an
inductive theorem of the rewrite theory ⃗NATURAL ` C ˚ C using, for example, the
inductive inference system in [6]. The internalize and conquer methodology offers
an alternative way to prove NATURAL+C*C ground confluent. This holds because
NATURAL-ARITH in Example 5, as shown in its NuITP proof script, is semanti-
cally equivalent to a supermodule of it which has internalized the associativity
and commutativity axioms for ` and ˚. But then, by the Module Interpolation
Theorem, NATURAL-ARITH is semantically equivalent to the admissible module:

6 If B includes axioms for associative but non-commutative symbols, it is possible in
theory to have an infinite set of such critical pairs; but in practice this infinity can
be avoided in most cases for three reasons: (i) when computing critical pairs the B-
unifications involved are disjoint ones; (ii) a non-left-linear rule can always be made
left-linear by making the non-linearity constraint part of its condition; and (iii) it is
well-known that disjoint A-unification of left-linear terms is finitary.
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fmod NATURAL-ARITH+C*C is

sorts Nat NzNat . subsort NzNat < Nat .

op 0 : -> Nat [ctor metadata "1"] .

op s : Nat -> NzNat [ctor metadata "2"] .

op _+_ : Nat Nat -> Nat [comm metadata "3"] .

op _*_ : Nat Nat -> Nat [comm metadata "4"] .

op _*_ : NzNat NzNat -> NzNat [comm metadata "5"] .

op _^_ : NzNat Nat -> NzNat [metadata "6"] .

vars n m k : Nat . vars n’ k’ m’ : NzNat .

eq n + 0 = n .

eq n + s(m) = s(n + m) .

eq n * 0 = 0 .

eq n * s(m) = n + (n * m) .

eq n’ ^ 0 = s(0) .

eq n’ ^ s(m) = n’ * (n’ ^ m) .

endfm

It then follows from Lemma 1 applied to the semantically equivalent programs
NATURAL-ARITH and NATURAL-ARITH+C*C with ∆0 “ t`, ˚u that NATURAL+C*C,
is also an admissible module and therefore ground convergent, as desired.

6 Related Work and Conclusions

This work is most closely related to inductive theorem proving methods and tools
for OBJ [12], CafeOBJ [9], and Maude [15, 3]. In comparison with that work, the
checkable conditions for preserving program properties up and/or down program
hierarchies, the methods and conditions to prove program equivalence, and the
internalization results and methodology, except for the support of internaliza-
tion in [3], which is based on an earlier, unpublished version of these results,
seem to be new. This work is also most closely related to methods and tools to
prove order-sorted equational specifications ground convergent [6, 20]. In rela-
tion to that work, the internalization method to prove order-sorted equational
specifications ground convergence is new.

In conclusion, this work has presented new concepts and methods to make the
verification of order-sorted equational programs modulo structural axioms more
modular, succinct and reusable, including: (i) preservation of program proper-
ties up and/or down program hierachies; (ii) a notion of equational program
equivalence and simple conditions for its verification; and (iii) an internalize and
conquer methodology and conditions to make: (a) proofs of program equivalence
simpler and incremental, (b) inductive proofs shorter; and (c) proofs of ground
convergence simpler. Future work includes support for conditional rewrite rules,
and more general program equivalence notions. Program equivalence requires
that the two canonical term algebras are identical and therefore have the same
data representation. This can be generalized to a notion of program isomorphism
between programs that may have different data representations.

Acknowledgements. I thank the reviewers for their excellent comments and
suggestions. Work partially supported under NRL contract N0017323C2002.
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A Proofs of Theorems and Lemmas

Proof of Theorem 2.

Proof. First of all, note that, since CΣ{E⃗,B |Ω` “ CΩ`{E⃗Ω` ,BΩ`
and CΣ1{E⃗1,B1 |Ω1` “

CΩ1`{E⃗1
Ω1` ,B1

Ω1`
, the S-sorted function of the unique Σ-homomorphism h : CΣ{E⃗,B Ñ

CΣ1{E⃗1,B1 |Σ coincides with the S-sorted function of the unique Ω`-homomorphism

h : CΩ`{E⃗Ω` ,BΩ`
Ñ CΩ1`{E⃗1

Ω1`
,B1

Ω1`
|Ω` . Therefore, in each case (1)–(3) we just

need to show that, for each sort s P S, the function hs : CΩ`{E⃗Ω` ,BΩ` ,s Ñ

CΩ1`{E⃗1

Ω1`
,B1

Ω1`
,s is injective, resp. surjective, resp. bijective. Furthermore, since

the unique surjective Ω`-homomorphism TΩ` Ñ CΩ`{E⃗Ω` ,BΩ`
maps each

u P TΩ`,s to ru!E⃗Ω` ,BΩ`
s P CΩ`{E⃗Ω` ,BΩ` ,s, and the unique Ω`-homomorphism

TΩ` Ñ CΩ1`{E⃗1

Ω1`
,B1

Ω1`
|Ω` maps each u P TΩ`,s to ru!E⃗1

Ω1`
,B1

Ω1`
s P CΩ1`{E⃗1

Ω1`
,B1

Ω1`
,s,

by initiality of TΩ` hs must be the function hs : CΩ`{E⃗Ω` ,BΩ` ,s Q ru!E⃗Ω` ,BΩ`
sBΩ`

ÞÑ

ru!E⃗1

Ω1`
,B1

Ω1`
sB1

Ω1`
P CΩ1`{E⃗1

Ω1`
,B1

Ω1`
,s.

If the inclusion is extending we need to show that for any rusBΩ`
, rvsBΩ`

P

CΩ`{E⃗Ω` ,BΩ` ,s, if ru!E⃗1

Ω1`
,B1

Ω1
` sB1

Ω1`
“ rv!E⃗1

Ω1`
,B1

Ω1`
sB1

Ω1`
, then rusBΩ`

“ rvsBΩ`
.

But ru!E⃗1

Ω1`
,B1

Ω1`
sB1

Ω1`
“ rv!E⃗1

Ω1`
,B1

Ω1`
sB1

Ω1`
just means u!E⃗1

Ω1`
,B1

Ω1`
“B1

Ω1`
v!E⃗1

Ω1`
,B1

Ω1`
.

First of all note that, u!E⃗1

Ω1`
,B1

Ω1`
“ u and v!E⃗1

Ω1`
,B1

Ω1`
“ v, i.e., both terms are

in E⃗1
Ω1` , B1

Ω1` -canonical form. Let me show this for u!E⃗1

Ω1`
,B1

Ω1`
since the ar-

gument is identical for v!E⃗1

Ω1`
,B1

Ω1`
. Suppose u ÑE⃗1

Ω1`
,B1

Ω1`
w. This happens iff

there is a term w1 such that u!U⃗Ω1` ,B1

A_C,Ω1`
u1, u1 ÑE⃗1

Ω1` U
Ω1`

,B1

A_C,Ω1`
w1 and

w “B1

Ω1`
w1. But note that u1 “ u!U⃗Ω1` ,B1

A_C,Ω1`
is actually u1 “ u!U⃗Ω` ,BA_C,Ω`

.

This is because, (a) u is an Ω`-term and by assumption (i), if w is an Ω`-
term, then w “B1

A_C,Ω1`
w1 iff w1 is an Ω`-term and w “BA_C,Ω`

w1, and

(b), also by assumption (i), for any Ω`-term u2 if u2 ÑU⃗Ω1` ,BA_C,Ω1`
u3

the rule fpx, eq Ñ x, (resp. fpe, xq Ñ x) applied to u2 to get u3 can al-

ways be chosen to be a rule in U⃗Ω` . This means that u1 is an Ω`-term and
u “BΩ`

u1. But since rus P CΩ`{E⃗Ω` ,BΩ` ,s, u
1 must be in E⃗Ω` , BΩ`-canonical

form. This therefore means that a rewrite u1 ÑE⃗1

Ω1` U
Ω1`

,B1

A_C,Ω1`
w1 is impos-

sible, since by (a) above and the assumption in (1) such a rewrite must be of

the form u1 ÑE⃗Ω`
U
Ω`

,BA_C,Ω1`
w1, which is impossible by u1 in E⃗Ω` , BΩ` -

canonical form. This shows that u!E⃗1

Ω1`
,B1

Ω1`
“ u and v!E⃗1

Ω1`
,B1

Ω1`
“ v. We

furthermore have u!E⃗1

Ω1`
,B1

Ω1`
“B1

Ω1`
v!E⃗1

Ω1`
,B1

Ω1`
, i.e., u “B1

Ω1`
v, which holds

iff u!U⃗Ω1` ,B1

A_C,Ω1`
“B1

A_C,Ω1`
v!U⃗Ω1` ,B1

A_C,Ω1`
, which, reasoning as above, holds

iff u!U⃗Ω` ,BA_C,Ω`
“BA_C,Ω`

v!U⃗Ω` ,BA_C,Ω`
, which is equivalent to u “BΩ`

v,

proving the injectivity of hs.
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If the inclusion is generated-by we need to show h surjective. Since CΩ1`{E⃗1
Ω1` ,B1

Ω1`

and CΩ`{E⃗Ω` ,BΩ`
are initial Ω1`-, resp. Ω`-, algebras, we have surjective Ω1`-

, resp. Ω`-, homomorphisms q1 : TΩ1` Ñ CΩ1`{E⃗1
Ω1` ,B1

Ω1`
and q : TΩ` Ñ

CΩ`{E⃗Ω` ,BΩ`
. But conditions (a)–(b) in (2) mean that TΩ1` |Ω` “ TΩ` , which

forces the unique Ω`-homomorphism TΩ` Ñ CΩ1`{E⃗1
Ω1` ,B1

Ω1`
|Ω` to be q1|Ω

and therefore surjective, and, by initiality of TΩ` , the homomorphism identity
q;h “ q1|Ω` , which by q1|Ω` surjective forces h to be surjective.

If the inclusion is protecting, h is injective by the requiements in (1) and
surjective by those in (2), and therefore bijective. 2.

Proof of Theorem 3.

Proof. To see the pñq implication, since TΣ{EYG |ù E we have a unique Σ-
homomorphism h : TΣ{E Ñ TΣ{EYG. And since TΣ{E |ù E Y G, we also have
a unique Σ-homomorphism g : TΣ{EYG Ñ TΣ{E . But then, the initiality of
TΣ{E forces h; g “ idTΣ{E

, and the initiality of TΣ{EYG forces g;h “ idTΣ{EYG
.

Therefore, we have an isomorphism: TΣ{E – TΣ{EYG. We will be done of we
prove the following lemma:

Lemma 2. Let E,E1 be two sets of Σ-equations such that TΣ{E – TΣ{E1 . Then,
TΣ{E “ TΣ{E1 .

Proof. TΣ{E and TΣ{E1 are uniquely determined by the respective ground equal-
ity relations “E XT 2

Σ and “E1 XT 2
Σ . We just need to show p“E XT 2

Σq “ p“E1

XT 2
Σq. Since we have a Σ-isomorphism h : TΣ{E Ñ TΣ{E1 , and unique Σ-

homomorphisms r sE : TΣ Ñ TΣ{E , and r sE1 : TΣ Ñ TΣ{E , the initiality of
TΣ forces r sE ;h “ r sE1 , i.e., hsprtsEq “ rtsE1 for each t P TΣ,s, s P S. Let
t P TΣ,s and t1 P TΣ,s1 with t “E t1. Then rss “ rs1s and, by h order-sorted
Σ-homomorphism and rtsE “ rt1sE , we must have hsprtsEq “ hs1 prt1sEq, which
forces:

hsprtsEq “ rtsE1 “ rt1sE1 “ hs1 prt1sEq

giving us the containment p“E XT 2
Σq Ď p“E1 XT 2

Σq. Using the inverse isomor-
phism h´1 we likewise get p“E1 XT 2

Σq Ď p“E XT 2
Σq, giving us p“E XT 2

Σq “

p“E1 XT 2
Σq, as desired. 2

To see the pðq implication, since TΣ{E “ TΣ{EYG we have TΣ{E |ù G, which
exactly means pΣ,Eq |ùind G. 2

Proof of Lemma 1

Proof. It follows from the assumptions on E⃗∆0
(resp. E⃗1

∆0
) and B∆, that for

any t P T∆0ZΩ` , if t ÑE⃗,B t1 (resp. t ÑE⃗1,B1 t1), then t1 P T∆0ZΩ` and

t ÑE⃗∆0
YE⃗Ω`

,B∆0
YBΩ`

t1 ( resp. t ÑE⃗1
∆0

YE⃗1
Ω`

,B1
∆0

YB1

Ω`
t1). Therefore, both
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p∆0 ZΩ`, E∆0
YEΩ`

YB∆0
YBΩ` q and p∆0 ZΩ`, E1

∆0
YE1

Ω`
YB1

∆0
YB1

Ω` q

are sufficiently complete w.r.t. Ω, ground convergent, and therefore admissible.
Furthermore, for each t P T∆0ZΩ` , t!E⃗,B “ t!E⃗∆0

YE⃗Ω`
,B∆0

YBΩ`
and t!E⃗1,B1 “

t!E⃗1
∆0

YE⃗1
Ω`

,B1
∆0

YB1

Ω`
, which forces C∆ZΩ`{E⃗,B |∆0ZΩ` “ C∆ZΩ`{E⃗∆0

YE⃗Ω`
,B∆0

YBΩ`

and C∆ZΩ`{E⃗1,B1 |∆0ZΩ` “ C∆ZΩ`{E⃗1
∆0

YE⃗1
Ω`

,B1
∆0

YB1

Ω`
, which, by E ”sem E 1,

forces p∆0 ZΩ`, E∆0 YEΩ`
YB∆0 YBΩ` q ”sem p∆0 ZΩ`, E1

∆0
YE1

Ω`
YB1

∆0
Y

B1
Ω` q. 2

Proof of Theorem 4.

Proof. To see pñq, note that semantic equivalence forces (1), since CΣ{E⃗,B “

CΣ{E⃗1,B1 implies that CΣ{E⃗,B |Ω “ CΩ{E⃗Ω ,BΩ
“ CΩ{E⃗1

Ω ,B1
Ω

“ CΣ{E⃗1,B1 |Ω ; and

also forces (2), since E ”ind E 1 means that TΣ{EYB “ TΣ{E1YB1 , which forces
pΣ,E Y Bq |ùind pE1

∆zE∆q Y pB1
∆zB∆q.

To prove the pðq implication we first prove:

Lemma 3. For any two canonical term algebras CΣ{E⃗,B and CΣ{E⃗1,B1 with

respective constructor subspecifications pΩ,EΩ Y BΩq and pΩ,E1
Ω Y B1

Ωq and
such that CΩ{E⃗Ω ,BΩ

“ CΩ{E⃗1
Ω ,B1

Ω
, CΣ{E⃗,B “ CΣ{E⃗1,B1 iff for each Σ-term t,

t!E⃗{B “BΩ
t!E⃗1{B1 .

Proof. To see the pñq implication, note that the unique Σ-homomorphism TΣ Ñ

CΣ{E⃗,B maps each t P TΣ to rt!E⃗{BsBΩ
P CΩ{E⃗Ω ,BΩ

. Therefore, CΣ{E⃗,B “

CΣ{E⃗1,B1 means that for each t P TΣ , rt!E⃗{BsBΩ
“ rt!E⃗1{B1 sB1

Ω
, and therefore

that t!E⃗{B “BΩ
t!E⃗1{B1 .

To see the pðq implication, since CΩ{E⃗Ω ,BΩ
“ CΩ{E⃗1

Ω ,B1
Ω

, CΣ{E⃗,B and CΣ{E⃗1,B1

have the same underlying S-sorted set of data elements, and the same interpre-
tation cCΣ{E⃗,B

“ cCΣ{E⃗1,B1
for each constructor operator c P Ω. Therefore, to

show CΣ{E⃗,B “ CΣ{E⃗1,B1 we only need to show that for each f P ∆ we have

fCΣ{E⃗,B
“ fCΣ{E⃗1,B1

. Indeed, fCΣ{E⃗,B
pru1s, . . . , runsq “ rfpu1, . . . , unq!E⃗{Bs “

rfpu1, . . . , unq!E⃗1{B1 s “ fCΣ{E⃗1,B1
pru1s, . . . , runsq. 2

Now note that (1) (using Theorems 3 and 1) and (2) force pΣ,E Y Bq |ùind

E1 YB1, which forces t!E⃗{B “EYB t!E⃗1{B1 , which, by the Church-Rosser property,

then forces t!E⃗{B “BΩ
pt!E⃗1{B1 q!E⃗{B , which by (1) and Lemma 3 forces CΣ{E⃗,B “

CΣ{E⃗1,B1 . 2

Proof of Theorem 5.

Proof. pΣ,B, E⃗ Y G⃗q will be admissible if we prove that pΣ,B, E⃗ Y G⃗q is lo-
cally ground confluent modulo B. Let t, u, v P TΣ be such that u E⃗YG⃗{B Ð

t ÑE⃗YG⃗{B v. We need to show that u ÓE⃗YG⃗{B v. This will hold if we prove that
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u ÓE⃗{B v. But since pΣ,E Y Bq |ùind G, by Theorem 3 this forces u “EYB v,

which, since E⃗ is gound convergent modulo B, forces u ÓE⃗{B v. Next we have

to show that CΣ{E⃗,B “ CΣ{E⃗YG⃗,B . Let us first prove that for each t P TΣ

t!E⃗,B “BΩ
t!E⃗YG⃗,B . Since t!E⃗,B “EYGYB t!E⃗YG⃗,B , by pΣ,E Y Bq |ùind G

and Theorem 3, t!E⃗,B “EYB t!E⃗YG⃗,B , which by the ground Church-Rosser

Theorem holds iff t!E⃗,B “BΩ
pt!E⃗YG⃗,Bq!E⃗,B . But, by definition, t!E⃗YG⃗,B is al-

ready in E⃗, B-canonical form, so that t!E⃗,B “BΩ
t!E⃗YG⃗,B . This means that

CΣ{E⃗,B and CΣ{E⃗YG⃗,B have the same S-sorted set of data elements. So, to

prove CΣ{E⃗,B “ CΣ{E⃗YG⃗,B it is enough to prove that for each f P Σ we

have the function identity fCΣ{E⃗,B
“ fCΣ{E⃗YG⃗,B

. But this follows easily from

t!E⃗,B “BΩ
t!E⃗YG⃗,B , as in the proof of Lemma 3. 2

Proof of Theorem 6.

Proof. To show pΣ,E Y B Y B1q admissible we need to show that the rules

E⃗ are locally ground confluent modulo B Y B1. Let t, u, v P TΣ be such that
u E⃗{BYB1 Ð t ÑE⃗{BYB1 v. We need to show that u ÓE⃗{BYB1 v. This will hold if

we prove u ÓE⃗{B v. But since pΣ,E Y Bq |ùind B1, Theorem 3 forces u “EYB v,

which, since E⃗ is ground confluent modulo B, forces u ÓE⃗{B v, as desired.

We will be done if we show that CΣ{E⃗,B “ CΣ{E⃗,BYB1 . First of all note that

for any ground Σ-term t P TΣ , t!E⃗,B “BΩ
t!E⃗,BYB1 . This is because, by Theo-

rem 3, t!E⃗,B “EYB tE⃗,BYB1 , by the ground Church Rosser Theorem t!E⃗,B “BΩ

pt!E⃗,BYB1 q!E⃗,B and by t!E⃗,BYB1 already being in E⃗, B-normal form t!E⃗,B “BΩ

t!E⃗,BYB1 . Second, CΣ{E⃗,B and CΣ{E⃗,BYB1 will have the same undelying S-sorted

set of data elements if we show that t!E⃗,B “BΩ
t!E⃗,BYB1 ô t!E⃗,B “BΩYB1

Ω

t!E⃗,BYB1 , since this shows that rt!E⃗,BsBΩ
“ rt!E⃗,BYB1 sBΩYB1

Ω
. This only requires

showing t!E⃗,B “BΩYB1
Ω

t!E⃗,BYB1 ñ t!E⃗,B “BΩ
t!E⃗,BYB1 . But, by Theorem 3,

t!E⃗,B “BΩYB1
Ω
t!E⃗,BYB1 ñ t!E⃗,B “EYB t!E⃗,BYB1 , which, as shown above, forces

t!E⃗,B “BΩ
t!E⃗,BYB1 , as desired. The only remaining task is to show that for each

f P Σ, fCΣ{E⃗,B
“ fCΣ{E⃗,BYB1

. But this follows easily from t!E⃗,B “BΩ
t!E⃗,BYB1 ,

exactly as in the proof of Lemma 3. 2

Proof of Theorem 7

Proof. Assuming (1), (2) and Theorem 6 (with ∆ “ H) yields CΩ{E⃗Ω ,BΩ
“

CΩ{E⃗Ω ,BΩYB1
Ω

and CΩ{E⃗1
Ω ,B1

Ω
“ CΩ{E⃗1

Ω ,BΩYB1
Ω

. Assuming (1), (3) and Theorem

5 yields CΩ{E⃗Ω ,BΩYB1
Ω

“ CΩ{E⃗ΩYE⃗1
Ω ,BΩYB1

Ω
“ CΩ{E⃗1

Ω ,BΩYB1
Ω

. Therefore,

CΩ{E⃗Ω ,BΩ
“ CΩ{E⃗Ω ,BΩYB1

Ω
“ CΩ{E⃗ΩYE⃗1

Ω ,BΩYB1
Ω

“ CΩ{E⃗1
Ω ,BΩYB1

Ω
“ CΩ{E⃗1

Ω ,B1
Ω

as desired. 2

Proof of Theorem 8
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Proof. Since E ”sem E2 whe have E |ùind E1 YB1. Since by hypothesis the rules

E⃗ Y E⃗1 are terminating modulo B Y B1 Y B2, they are a fortiori terminating
modulo B Y B1. Therefore, Theorem 5 applies and we have pΣ,E Y E1 Y Bq

admissible and E ”sem pΣ,EYE1 YBq, which implies pΣ,EYE1 YBq |ùind B1,
and, since Σ is B Y B1 Y B2-preregular, a fortiori Σ is B Y B1-preregular, so
that Theorem 5 applies and we have E 1 admissible and pΣ,EYE1 YBq ”sem E 1.
Therefore, by symmetry and transitivity of ”sem , we get E ”sem E 1 ”sem E2. 2

B NuITP Proof Scripts

To prove inductive theorems with the NuITP all modules should previously be
entered in Maude after giving the Maude command set include BOOL off .

This is because the BOOL module, which has several built-in features, would
otherwise be added by default; but the NuITP does not expect any built-in
features in the modules it proves properties about.

NuITP Proof Script for Example 3

set module NAT+ACU*AC .

set goal ((K:Natural * (N’:NzNatural + 1)) =

(K:Natural + (K:Natural * N’:NzNatural))) .

apply eps to 0 .

NuITP Proof Script for Example 4

set module NAT+ACU .

genset ACUG for Natural is 0 ;; (1 + N:NzNatural) .

set goal ((N:Natural + M:Natural) = (M:Natural + N:Natural)) .

apply gsi* to 0 on $1:Natural .

NuITP Proof Script for Example 5

set module NATURAL-ARITH .

genset SIND for Nat is 0 ;; s(N:Nat) .

set goal ((0 + Y:Nat = Y:Nat) /\ (s(X:Nat) + Y:Nat) = s(X:Nat + Y:Nat)) .

apply gsi! to 0 on $2:Nat .

internalize .

set goal X:Nat + (Y:Nat + Z:Nat) = (X:Nat + Y:Nat) + Z:Nat .
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apply gsi! to 0 on $3:Nat .

internalize as assoc .

set goal (X:Nat + Y:Nat = Y:Nat + X:Nat) .

apply gsi! to 0 on $1:Nat .

internalize as comm .

set goal X:Nat * (Y:Nat + Z:Nat) = (X:Nat * Y:Nat) + (X:Nat * Z:Nat) .

apply gsi! to 0 on $2:Nat .

internalize .

set goal ((0 * Y:Nat = 0) /\ (s(X:Nat) * Y:Nat) = (Y:Nat + (X:Nat * Y:Nat))) .

apply gsi! to 0 on $2:Nat .

internalize .

set goal (Y:Nat + Z:Nat) * X:Nat = (Y:Nat * X:Nat) + (Z:Nat * X:Nat) .

apply gsi! to 0 on $2:Nat .

internalize .

set goal X:Nat * (Y:Nat * Z:Nat) = (X:Nat * Y:Nat) * Z:Nat .

apply gsi! to 0 on $3:Nat .

internalize as assoc .

set goal (X:Nat * Y:Nat = Y:Nat * X:Nat) .

apply gsi! to 0 on $2:Nat .

internalize as comm .

set goal (X:NzNat ^ (Y:Nat + Z:Nat) = (X:NzNat ^ Y:Nat) * (X:NzNat ^ Z:Nat)) .

apply gsi! to 0 on $2:Nat .

internalize .

set goal (X:NzNat ^ (Y:Nat * Z:Nat) = (X:NzNat ^ Y:Nat) ^ Z:Nat) .

apply gsi! to 0 on $3:Nat .
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internalize .

set goal (X:NzNat ^ Y:Nat) ^ Z:Nat = (X:NzNat ^ Z:Nat) ^ Y:Nat .

apply eps to 0 .

internalize .
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Abstract. This paper presents an approach to checking the equivalence
of quantum circuits based on Dirac notation in Maude. Specifically, we
specify quantum states and quantum gates in Dirac notation with scalars
and use a set of laws from quantum mechanics and matrix operations
to reason about quantum computation. The equivalence of quantum cir-
cuits can be reduced to matrix equivalence modulo a global phase in
Dirac notation. To achieve this, we compare each column vector of two
matrices with respect to the same global phase, making it faster than
the actual matrix equivalence check, especially in cases of non-equivalent
quantum circuits. Furthermore, our approach enhances the reliability in
determining the equivalence problem by taking into account constant in-
puts for quantum circuits, which have been ignored by state-of-the-art
tools. We use Maude, a high-level specification/programming language
based on rewriting logic, to develop a support tool called |QCEC⟩ for
our approach. Several case studies have been conducted with the tool.
These demonstrate the effectiveness of our approach and |QCEC⟩ for the
equivalence checking of quantum circuits.

Keywords: Equivalence Checking · Quantum Circuits · Dirac Notation
· Maude

1 Introduction

Quantum computing is a rapidly emerging technology that uses the principles of
quantum mechanics to solve complex problems beyond the capabilities of current
classical computing. Several quantum algorithms have been proposed, showing
significant improvements over classical algorithms, such as Shor’s fast algorithms
for discrete logarithms and factoring in 1994 [20]. Although practical quantum
computers capable of running such algorithms effectively are not yet available,
recent exponential investments from big companies like IBM, Google, Microsoft,
and Intel bring the future of the quantum era within closer reach.

Quantum circuits are a natural model of quantum computation, comprising
qubits and quantum operations (e.g., quantum gates), that can be used to design
and implement quantum algorithms. However, quantum circuits are typically

⋆ The research was supported by JAIST Research Grant for Fundamental Research
and by JSPS KAKENHI Grant Numbers JP23H03370, JP23K19959.
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used to design quantum algorithms at a high abstraction level without consider-
ing specific hardware restrictions. To execute the quantum circuits on an actual
quantum device, they have to undergo a compilation process, transforming the
high abstraction level to a low abstraction level that conforms to all restrictions
imposed on the targeted device. More precisely, this compilation process has
several key aspects as follows. Firstly, quantum devices natively support only
a limited set of quantum operations. Consequently, quantum circuits intended
for the target device must be expressed using only these native quantum opera-
tions. This requires a decomposition (or translation) step of non-native quantum
operations into sequences of native ones [10,1,12]. Secondly, logical qubits used
in quantum circuits have to be mapped to physical qubits on the target device.
However, this mapping cannot be arbitrary because the target device imposes
restrictions on which physical qubits can interact with each other. To achieve
this, a mapping (or routing) step is required, which involves adding SWAP and
Hadmard gates to quantum circuits [21,25,5,23]. Lastly, after the decomposi-
tion and mapping steps, the size of quantum circuits tends to increase, posing
challenges for their execution on quantum devices due to noise and decoherence
effects. Therefore, an optimization step is required to reduce the size of quantum
circuits in terms of the number of quantum gates [11,18,14]. As a result of these
processes, the quantum circuit defined at a high abstraction level and its com-
piled counterpart defined at a low abstraction level are significantly different.
Therefore, it is crucial to verify the equivalence of two quantum circuits based
on their functionality.

There are two main approaches to equivalence checking of quantum circuits:
one based on quantum decision diagrams [3] and the other based on the ZX
calculus [17]. In this work, we propose a different approach to the equivalence
checking of quantum circuits based on Dirac notation [6]. Specifically, we specify
quantum states (qubits) and quantum gates in Dirac notation with scalars and
use a set of laws from quantum mechanics and matrix operations to reason about
quantum computation. The functionality of quantum circuits can be described by
a sequence of quantum gates, which are represented by unitary matrices. Given
two quantum circuits in the form of U = Um . . . U0 and U ′ = U ′

m′ . . . U ′
0, the two

quantum circuits are considered equivalent if U is equal to U ′ modulo a global
phase, which is physically unobservable [15]. Although Dirac notation provides
a canonical form for quantum gates and quantum states, directly comparing
U and U ′ is inefficient because it requires costly matrix-matrix multiplications
Um . . . U0 and U ′

m′ . . . U ′
0 to obtain U and U ′ for comparison. Moreover, if U is

significantly different from U ′, constructing the entire elements of both matrices
is unnecessary. Instead, we can compare each column of two matrices. In other
words, for each basis vector |ϕi⟩ in an orthonormal basis of a Hilbert space, if
U |ϕi⟩ is equal to U ′ |ϕi⟩ modulo the same global phase, then the two quantum
circuits are equivalent. It is important to note that we may need a few iterations
to check the equivalence of non-equivalent quantum circuits, making it faster
than the actual matrix equivalence check. We have presented the theoretical
foundation for equivalence checking of quantum circuits in [8] to ensure the cor-
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rectness of our approach. Quantum circuits often involve constant inputs, which
refer to inputs with values that are initially fixed to a concrete state, such as |0⟩,
at the beginning of the computation. In this paper, we extend the theoretical
foundation in [8] to handle the constant inputs for checking the equivalence of
quantum circuits. Because the state-of-the-art tools in [3,17] ignore this informa-
tion, they may lead to incorrect decisions, which will be discussed in Section 6.
Therefore, our approach enhances the reliability in determining the equivalence
problem by taking into account the constant inputs for quantum circuits. We use
Maude [4], a high-level specification and programming language based on rewrit-
ing logic [13], to develop a support tool called |QCEC⟩ for our approach. Several
case studies have been conducted with the tool, and some quantum circuits used
to represent Superdense coding as a state transfer [9] have been confirmed to be
equivalent if we take into account constant inputs; otherwise, they are not equiv-
alent anymore. These demonstrate the effectiveness of our approach and |QCEC⟩
for the equivalence checking of quantum circuits. |QCEC⟩ and case studies are
publicly available at https://github.com/canhminhdo/ket-qcec.

The rest of the paper is organized as follows: Section 2 provides basic quan-
tum mechanics and symbolic reasoning for quantum computation based on Dirac
notation, Section 3 describes the theoretical foundation of equivalence checking
of quantum circuits in this work, along with an algorithm constructed based on
it, Section 4 describes how to specify quantum states, quantum gates, and quan-
tum circuits, Section 5 presents how to develop |QCEC⟩ in Maude, Section 6
demonstrates how to use |QCEC⟩ to conduct equivalence checking of quantum
circuits for some case studies, Section 7 presents some existing work, and Sec-
tion 8 concludes the paper with some pieces of future work.

2 Preliminaries

This section briefly describes some basic notations from quantum mechanics
based on linear algebra (refer to [15] for more details). Besides, we describe
symbolic reasoning [7,22] to reason about quantum computation based on Dirac
notation.

2.1 Basic Quantum Mechanics

In classical computing, the fundamental unit of information is a bit whose value
is either 0 or 1. In quantum computing, the counterpart is a quantum bit or
qubit, which has two basis states, conventionally written in Dirac notation [6]

as |0⟩ and |1⟩, which denote two column vectors

(
1

0

)
and

(
0

1

)
, respectively.

In quantum theory, a general state of a quantum system is a superposition or
linear combination of basis states. A quantum state is a unit vector in a Hilbert
space H, which is a vector space equipped with an inner product such that each
Cauchy sequence has a limit. The state of a single qubit is |ψ⟩ = α |0⟩ + β |1⟩,
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where α and β are complex numbers such that |α|2 + |β|2 = 1. States can be

represented by column complex vectors as follows: |ψ⟩ =

(
α

β

)
= α |0⟩ + β |1⟩,

where {|0⟩ , |1⟩} forms an orthonormal basis of the two-dimensional complex
vector space.

The basis {|0⟩ , |1⟩} is called the computational (or standard) basis. Besides,
there are some other orthonormal bases studied in the literature, such as diagonal
(or dual, or Hadamard) basis consisting of the following vectors:

|+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩)

The evolution of a closed quantum system can be performed by a unitary
transformation. If the state of a qubit is represented by a column vector, then
a unitary transformation U can be represented by a complex-value matrix such
that UU † = U †U = I or U † = U−1, where U † is the conjugate transpose
of U . U acts on the Hilbert space H transforming a state |ψ⟩ to a state |ψ′⟩
by a matrix multiplication such that |ψ′⟩ = U |ψ⟩. There are some frequently
used quantum gates in applications: the Hadamard gate H, the identity gate I,
the Pauli gates X, Y , and Z, and the controlled-NOT gate CX . Note that the
CX gate performs on two qubits, while the remaining gates perform on a single
qubit. Their matrix representations are as follows:

I2 =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
,

Z =

(
1 0

0 −1

)
, H = 1√

2

(
1 1

1 −1

)
, CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

.

where i is the imaginary unit. For example, the Hadamard gate on a single
qubit performs the mapping |0⟩ 7→ 1√

2
(|0⟩ + |1⟩) and |1⟩ 7→ 1√

2
(|0⟩ − |1⟩). The

controlled-NOT gate on pairs of qubits, which we explain in the next paragraph,
performs the mapping |00⟩ 7→ |00⟩ , |01⟩ 7→ |01⟩ , |10⟩ 7→ |11⟩ , |11⟩ 7→ |10⟩,
which can be understood as inverting the second qubit (referred to as the target)
if and only if the first qubit (referred to as the control) is one.

For multiple qubits, we use the tensor product of Hilbert spaces. Let H1

and H2 be two Hilbert spaces. Their tensor product H1 ⊗ H2 is defined as a
vector space consisting of linear combinations of the vectors |ψ1ψ2⟩ = |ψ1⟩ |ψ2⟩ =
|ψ1⟩ ⊗ |ψ2⟩, where |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2. Systems of two or more qubits
may be in entangled states, meaning that states of qubits are correlated and
inseparable. Entanglement shows that an entangled state of two qubits cannot
be expressed as a tensor product of single-qubit states. We can use H and CX
gates to create entangled states as follows: CX((H⊗I) |00⟩) = 1√

2
(|00⟩+|11⟩).
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Let |ψ⟩ be a quantum state and θ ∈ [0, 2π). In quantum mechanics, the state
eiθ |ψ⟩ is considered to be physically equal to |ψ⟩ with respect to the global

phase factor eiθ. Additionally, ⟨ψ| is the dual of |ψ⟩ such that ⟨ψ|† = |ψ⟩ and

|ψ⟩† = ⟨ψ|. From an observable perspective, two states are undistinguishable
if they differ only by a global phase. We can use density matrices |ψ⟩⟨ψ| to
present quantum states |ψ⟩ from which we can eliminate the global phase factor
as follows: eiθ |ψ⟩ (eiθ |ψ⟩)† = eiθ |ψ⟩ e−iθ ⟨ψ| = |ψ⟩⟨ψ|.

2.2 Symbolic Reasoning

We proposed symbolic reasoning [7] based on Dirac notation with scalars, used a
set of laws from quantum mechanics and basic matrix operations to reason about
quantum computation in Maude. This section briefly describes terms used in our
symbolic reasoning and a set of laws used to reduce terms.

Terms Terms are built from scalars and basis vectors with some operations.

– Scalars are complex numbers. We extend rational numbers supported in
Maude to deal with complex numbers. Some operations for scalars, such as
multiplication, fraction, addition, conjugation, absolute, power, and square
root are specified, but we do not mention them here to make the paper
concise.

– Basis vectors are the computational basis written in Dirac notation as |0⟩
and |1⟩.

– Operations for matrices consist of scalar multiplication of matrices ·, matrix
product×, matrix addition +, tensor product⊗, and the conjugate transpose
A† of a matrix A.

In Dirac notation, ⟨0| is the dual of |0⟩ such that ⟨0|† = |0⟩ and |0⟩† = ⟨0|;
similarly for ⟨1|. The terms |j⟩×⟨k| and ⟨j|×|k⟩ may be written shortly as |j⟩ ⟨k|
and ⟨j|k⟩ for any j,k ∈ {0,1}. Note that we deal with the inner product ⟨j|k⟩ by
means of ⟨j|×|k⟩ in our specification because its result is either zero or one scalar
and so its specification is either zero matrix O or identity matrix I (see some
laws applied for them in Table 1), respectively. By using these notations, we
can intuitively explain how quantum operations work. For example, the X gate
performs mapping |0⟩ 7→ |1⟩ and |1⟩ 7→ |0⟩. Therefore, we specify the X gate as
|0⟩ ⟨1| + |1⟩ ⟨0| in Maude instead of using explicitly the matrix representation(
0 1

1 0

)
. Using Dirac notation instead of explicitly complex vectors and matrices

as Paykin et al. proposed in [16], making our representations more compact.
We have X |0⟩ = |1⟩ ⟨0|0⟩ + |0⟩ ⟨1|0⟩ = |1⟩ because of the use of some laws in
Table 1 and similarly for X |1⟩.

We conventionally specify some basic matrices Bi for i ∈ [0..3] as follows:

B0 = |0⟩ × ⟨0|, B1 = |0⟩ × ⟨1|, B2 = |1⟩ × ⟨0|, B3 = |1⟩ × ⟨1|.
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Table 1: A set of laws used for symbolic reasoning

No. Law

L1 ⟨0|0⟩ = ⟨1|1⟩ = 1, ⟨1|0⟩ = ⟨0|1⟩ = 0

L2 Associativity of ×,+,⊗ and Commutativity of +

L3 0 ·Am×n = Om×n, c ·O = O, 1 ·A = A

L4 c · (A+B) = c ·A+ c ·B
L5 c1 ·A+ c2 ·A = (c1 + c2) ·A
L6 c1 · (c2 ·A) = (c1 · c2) ·A
L7 (c1 ·A)× (c2 ·B) = (c1 · c2) · (A×B)

L8 A× (c ·B) = (c ·A)×B = c · (A×B)

L9 A⊗ (c ·B) = (c ·A)⊗B = c · (A⊗B)

L10 Om×n ×An×p = Am×n ×On×p = Om×p

L11 Im ×Am×n = Am×n × In = Am×n

L12 A+O = O+A = O

L13 Om×n ⊗Ap×q = Ap×q ⊗Om×n = Omp×nq

L14 A× (B +C) = A×B +A×C

L15 (A+B)×C = A×C +B ×C

L16 (A⊗B)× (C ⊗D) = (A×C)⊗ (B ×D)

L17 A⊗ (B +C) = A⊗B +A⊗C

L18 (A+B)⊗C = A⊗C +B ⊗C

L19 (c ·A)† = c∗ ·A†, (A×B)† = B† ×A†

L20 (A+B)† = A† +B†, (A⊗B)† = A† ⊗B†

L21 Im
† = Im,O

†
m×n = On×m, (A

†)† = A

L22 |0⟩† = ⟨0| , ⟨0|† = |0⟩ , |1⟩† = ⟨1| , ⟨1|† = |1⟩

The I ,X ,Y , Z ,H , andCX gates are then a linear combination of the matrices
Bi with scalars as follows:

I = B0 +B3, X = B1 +B2, Y = (−i) ·B1 + i ·B2, Z = B1 + (−1) ·B3,

H = 1√
2
·B0 +

1√
2
·B1 +

1√
2
·B2 + (− 1√

2
) ·B3, CX = B0 ⊗ I2 +B3 ⊗X.

For any 2n × 2n matrix, we can represent it as the linear combination of the
tensor products of basic matrices Bi with scalars with respect to the number n
of qubits. Therefore, quantum states and quantum gates can be represented as
terms with Dirac notation and scalars.

Laws Table 1 shows a set of laws derived from the properties of quantum
mechanics and basic matrix operations. The reader interested in their proofs
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in Coq is referred to [19]. Because |0⟩ and |1⟩ can be viewed as 2× 1 matrices,
then the laws actually describe matrix calculations with Dirac notation, zero and
identity matrices, and scalars. These laws are described by equations in Maude
and are used to automatically reduce terms until no more matrix operation is
applicable. Some laws dedicated to simplifying the expressions about complex
numbers are also specified in Maude by means of equations, but we do not
mention them here to make the paper concise.

For example, we would like to reduce the term CX × ((H ⊗ I)× |0⟩ ⊗ |0⟩)
to check whether its result is 1√

2
· |0⟩ ⊗ |0⟩+ 1√

2
· |1⟩ ⊗ |1⟩. The term says that

the H gate acts on the first qubit followed by the CX gate where the control
and target bits are the first and second qubits, respectively. The reader who is
interested in the simplification of the term is referred to [7] for more details.

Using the laws, the term is reduced to a canonical form that is a linear
combination of the tensor product of the computational basis with scalars. The
whole process is conducted automatically in Maude and the result is the same
as expected. The key idea is to reduce the matrix multiplication in the form
of ⟨i|j⟩ into a scalar and simplify the matrix representation by absorbing ones
and eliminating zeros (see the law with label L3). In this manner, our symbolic
reasoning about matrices can be conducted by rewriting in Maude instead of
explicitly calculating matrices.

3 Equivalence Checking of Quantum Circuits

This section describes the theoretical foundation of equivalence checking of quan-
tum circuits based on our previous work [8] together with an algorithm con-
structed to handle constant inputs for quantum circuits.

3.1 Theoretical Foundation

We propose a method for checking the equivalence of quantum circuits con-
structed from quantum gates based on their functionality. We suppose that quan-
tum circuits operate on quantum states in a Hilbert space H with n qubits. The
unitary evolution of quantum systems is described by unitary matrices whose
size is 2n × 2n. We first define the equivalence checking problem of quantum
circuits.

Definition 1 (Equivalence checking problem). Given two quantum circuits
represented by unitary matrices, U = Um . . . U0 and U ′ = U ′

m′ . . . U ′
0, the equiv-

alence checking problem of U and U ′ is asked to check whether U = eiθU ′ for
some θ ∈ [0, 2π).

We call eiθ a global phase that is physically unobservable [15]. In quantum
mechanics, quantum states that differ only by a global phase are physically
indistinguishable and equivalent under observation [15].

Hence, we define observable equivalence for quantum states as follows:
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Definition 2 (Observable equivalence for quantum states). |ψ⟩ ≈ |ψ′⟩ is
defined as |ψ⟩ = eiθ |ψ′⟩ for some θ ∈ [0, 2π). We may write |ψ⟩ ≈θ |ψ′⟩ to make
it clear from the context.

To check |ψ⟩ ≈ |ψ′⟩, we can check the equality of their density matrices |ψ⟩⟨ψ| and
|ψ′⟩⟨ψ′| because using density matrices to represent quantum states can eliminate
the global phase. It is a handy trick to check the observable equivalence of two
quantum states by comparing their density matrices. This result is derived from
the following lemma.

Lemma 1. |ψ⟩ ≈ |ψ′⟩ if and only if |ψ⟩⟨ψ| = |ψ′⟩⟨ψ′|.

Proof. See the proof in our previous work [8] (specified in Lemma 3.1). ⊓⊔

Recall to check the equivalence of quantum circuits U and U ′, we need to check
whether U = eiθU ′ for some θ ∈ [0, 2π). We can use the following lemma to solve
this problem.

Lemma 2. Let U and U ′ be 2n×2n unitary matrices, then U = eiθU ′ for some
θ ∈ [0, 2π) if and only if U |ψ⟩ ≈θ U

′ |ψ⟩ for any vector |ψ⟩ ∈ H.

Proof. See the proof in our previous work [8] (specified in Lemma 3.2). ⊓⊔

In Lemma 2, it is unfeasible to consider any vector |ψ⟩ ∈ H because there
are infinite vectors in H. Therefore, we introduce the following lemma to help
us check whether U = eiθU ′ by considering only basis vectors in an orthonormal
basis of H. If the dimension of H is n, we need to consider at most 2n basis
vectors with respect to the same global phase.

Lemma 3. Let U and U ′ be 2n × 2n matrices, then U = eiθU ′ for some θ ∈
[0, 2π) if and only if U |ϕi⟩ ≈θ U

′ |ϕi⟩ for each basis vector |ϕi⟩ in an orthonormal
basis of H.

Proof. See the proof in our previous work [8] (specified in Lemma 3.3). ⊓⊔

Remark 1. Checking U |ψi⟩ ≈θ U
′ |ψi⟩ is actually checking the observable equiv-

alence of the i-th column vector of U and the i-th column vector of U ′ with
respect to the phase θ. In order to do so, we have the following lemma.

Lemma 4. U |ϕi⟩ ≈θ U
′ |ϕi⟩ for each basis vector |ϕi⟩ in an orthonormal ba-

sis of H if and only if U |ϕi⟩ ≈ U ′ |ϕi⟩ for each |ϕi⟩ and U |ϕi⟩ (U |ϕj⟩)† =
U ′ |ϕi⟩ (U ′ |ϕj⟩)† for each |ϕi⟩ and |ϕj⟩.

Proof. See the proof in our previous work [8] (specified in Lemma 3.4). ⊓⊔

Now, we introduce our main theorem to check whether U = eiθU ′ for some
θ ∈ [0, 2π) as follows.

Theorem 1. Let U and U ′ be 2n × 2n matrices, then U = eiθU ′ for some θ ∈
[0, 2π) if and only if U |ϕi⟩ (U |ϕi⟩)† = U ′ |ϕi⟩ (U ′ |ϕi⟩)† for each basis vector |ϕi⟩
and U |ϕi⟩ (U |ϕj⟩)† = U ′ |ϕi⟩ (U ′ |ϕj⟩)† for each |ϕi⟩ and |ϕj⟩ in an orthonormal
basis of H.
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Proof. See the proof in our previous work [8] (specified in Theorem 3.5). ⊓⊔

It is extremely expensive to calculate matrix-matrix multiplications Um . . . U0

and U ′
m′ . . . U ′

0 to obtain U and U ′ and subsequently multiple with each |ϕi⟩ and
|ϕj⟩ in Theorem 1 because of the exponential size of unitary matrices. Instead, we
can perform a series of matrix-vector multiplications between unitary matrices
and vectors in sequence as follows:∣∣u0i 〉 = U0 |ϕi⟩ ,

∣∣u1i 〉 = U1

∣∣u0i 〉 , . . . , |umi ⟩ = Um · um−1
i

The i-th column vector of matrix U is |ui⟩ (i.e., |umi ⟩) and similarly for the i-th
column vector |u′i⟩ of matrix U ′. We are now ready to check whether |ui⟩⟨ui|
is equal to |u′i⟩⟨u′i| for the first condition in Theorem 1. Moreover, for the sec-
ond condition in Theorem 1, it suffices to fix |ui⟩ and |u′i⟩, and check whether
|ui⟩⟨uj | =

∣∣u′i〉〈u′j∣∣ for all j ̸= i. This is an efficient way to handle the calculation
in Theorem 1.

3.2 Handling Constant Inputs for Equivalence Checking

Quantum circuits often involve constant inputs, which refer to inputs with val-
ues that are initially fixed to a concrete state, such as |0⟩, at the beginning of
the computation. Some quantum circuits are equivalent only if we consider the
constant inputs, as presented in Section 6. This section describes how to handle
constant inputs for the equivalence checking of quantum circuits.

Let n be the number of qubits among which m (≤ n) qubits are initially
fixed to the state |0⟩. We refer to these values as the constant inputs for m
qubits. To check the equivalence of quantum circuits, we only need to con-
sider 2n−m basis vectors in the orthonormal basis of H with n dimension. Let
A = {|ϕ0⟩ , . . . , |ϕ2n−1⟩} be an orthonormal basis, where |ϕi⟩ is in the form of
|b0 . . . bn−1⟩ with bj ∈ {0, 1} for i ∈ [0 . . . 2n− 1], j ∈ [0 . . . n− 1]. Let idx (|ϕi⟩ , j)
be the value of bj in basis vector |ϕi⟩. Let const be the set of indices denoting the
places where constant inputs are used for quantum circuits. The subset consist-
ing of 2n−m basis vectors that we need to consider for checking the equivalence
problem is defined as follows:

B = {|ϕi⟩ ∈ A | ∀j ∈ const , idx (|ϕi⟩ , j) ̸= 1}

We have the following lemma to support our claim.

Lemma 5. Let U and U ′ be 2n × 2n matrices and const be the set of indices
for constant inputs, then U = eiθU ′ for some θ ∈ [0, 2π) if and only if U |ϕi⟩ ≈θ

U ′ |ϕi⟩ for each basis vector |ϕi⟩ in B.

Proof. The ‘only if ’ part (the ⇒ direction) is immediate from Lemma 2.
For the ‘if ’ part (the ⇐ direction), we have the following. For arbitrary

|ψ⟩ ∈ H, there exists c0, . . . , ci, . . . , c2n−1 such that |ψ⟩ = c0 |ϕ0⟩+ · · ·+ ci |ϕi⟩+
· · · + c2n−1 |ϕ2n−1⟩ and |c0|2 + · · · + |ci|2 + · · · + |c2n−1|2 = 1. Because of the
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Algorithm 1: Equivalence Checking of Quantum Circuits

input : n – the dimension of a Hilbert space
U = Um . . . U0 and U ′ = U ′

m′ . . . U ′
0 – two quantum circuits

{|ϕ0⟩ , . . . , |ϕ2n−1⟩} – an orthonormal basis of a Hilbert space H
θ ∈ [0, 2π) – the phase
const – constant inputs

output: True (U = eiθU ′) or False (U ̸= eiθU ′)

1 forall |ϕi⟩ ∈ {|ϕ0⟩ , . . . , |ϕ2n−1⟩} do
2 if ¬isNecessary(|ϕi⟩ , const) then
3 continue
4 |ui⟩ = Um · . . . · U0 · |ϕi⟩
5 |u′

i⟩ = U ′
m′ · . . . · U ′

0 · |ϕi⟩
6 if |ui⟩⟨ui| ̸= |u′

i⟩⟨u′
i| then

7 return False
8 if i ̸= 0 ∧ |u0⟩⟨ui| ̸= |u′

0⟩⟨u′
i| then

9 return False

10 return True

constant inputs used for |ψ⟩, the qubits of |ψ⟩ at indices belonging to const are
always |0⟩. Therefore, for each |ϕi⟩ ∈ A \B, its coefficient ci above has to be 0.

For each basis vector ϕi ∈ B, we have U |ϕi⟩ ≈θ U
′ |ϕi⟩ from the assumption.

From Definition 2, we have U |ϕi⟩ = eiθU ′ |ϕi⟩ for some θ ∈ [0, 2π). Therefore,
for any complex number ci, we have Uci |ϕi⟩ = eiθU ′ci |ϕi⟩ for each |ϕi⟩ ∈ B.
Furthermore, for each basis vector ϕi ∈ A\B, we also have Uci |ϕi⟩ = eiθU ′ci |ϕi⟩
for any θ ∈ [0, 2π) because ci is 0.

To this end, we have the following:

U |ψ⟩ = Uc0 |ϕ0⟩+ · · ·+ Uci |ϕi⟩+ · · ·+ Uc2n−1 |ϕ2n−1⟩
= eiθU ′c0 |ϕ0⟩+ · · ·+ eiθU ′ci |ϕi⟩+ · · ·+ eiθU ′c2n−1 |ϕ2n−1⟩
= eiθU ′(c0 |ϕ0⟩+ · · ·+ ci |ϕi⟩+ · · ·+ c2n−1 |ϕ2n−1⟩)
= eiθU ′ |ψ⟩

for any |ψ⟩ and θ. It means that U |ψ⟩ ≈θ U
′ |ψ⟩ for any vector |ψ⟩. Therefore,

U = eiθU ′ by Lemma 2. ⊓⊔

3.3 An Algorithm for Equivalence Checking of Quantum Circuits

An algorithm for equivalence checking of quantum circuits can be constructed
based on Theorem 1 and Lemma 5, which is shown as Algorithm 1. Given two
quantum circuits in the form of U = Um . . . U0 and U

′ = U ′
m′ . . . U ′

0, an orthonor-
mal basis {|ϕ0⟩ , . . . , |ϕ2n−1⟩}, and constant inputs, for each basis vector ϕi, we
first check whether it is necessary to consider this basis vector or not based on
Lemma 5 in the code fragment at lines 2–3. If not, we skip this base vector and
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continue with the next one. Otherwise, we construct the series of matrix-vector
multiplications between unitary matrices and vectors with right associativity to
obtain |ui⟩ and |u′i⟩ in the code fragment at lines 4–5. We then check whether
their corresponding density matrices |ui⟩⟨ui| and |u′i⟩⟨u′i| are equal for the first
condition in Theorem 1 in the code fragment at lines 6–7. If this is not the case,
False is returned. Otherwise, we keep on checking for the second condition in
Theorem 1 except for the case of the basis vector |ϕ0⟩ in the code fragment at
lines 8–9. If |u0⟩⟨ui| is not equal to |u′0⟩⟨u′i|, False is returned. Otherwise, we
move to check for other basis vectors. True is returned at the end once all basis
vectors have been checked.

4 Formal Specification

This section shows how we specify qubits, quantum gates, and quantum circuits
in Maude.

4.1 Specification of Qubits and Quantum Gates

Qubits are specified as the linear combination of tensor product of the compu-
tational basis in Dirac notation with scalars and similarly for quantum gates.
Because |0⟩ and |1⟩ can be viewed as 2× 1 matrices, then qubits and quantum
gates are basically matrices. Quantum gates act on qubits (a quantum state)
specified as a matrix multiplication.

4.2 Specification of Quantum Circuits

Quantum circuits without measurements are composed of a sequence of quantum
gates. We specify it as a list of actions in which each action is one of the forms
as follows:

– I(i) applies the I gate on qi,
– X(i) applies the X gate on qi,
– Y(i) applies the Y gate on qi,
– Z(i) applies the Z gate on qi,
– H(i) applies the H gate on qi,
– S(i) applies the S gate on qi,
– T(i) applies the T gate on qi,
– CX(i, j) applies the CX gate on qi and qj ,
– CY(i, j) applies the CY gate on qi and qj ,
– CZ(i, j) applies the CZ gate on qi and qj ,
– SWAP(i, j) applies the SWAP gate on qi and qj ,
– CCX(i, j, k) applies the CCX gate on qi, qj , and qk,
– CCZ(i, j, k) applies the CCZ gate on qi, qj , and qk,
– CSWAP(i, j, k) applies the CSWAP gate on qi, qj , and qk,
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Note that we consider formalizing the most commonly used quantum gates to
describe the behavior of quantum circuits. Based on the quantum gates specified
above, we can easily describe the behavior of quantum circuits. For example, the
second circuit of Superdense coding as a state transfer in Figure 1 in Section 6
is expressed as a list of actions: CX(1,3) H(2) CZ(0,2) H(2).

LetΠ be a fixed set of quantum gates (or actions) specified above and U(C2n)
be a set of 2n×2n unitary matrices, where n is the number of qubits. A function
v̄ : Π → U(C2n) is a mapping from actions to unitary matrices as follows:

v̄(I(i)) = I⊗i ⊗ I ⊗ I⊗n−i−1,

v̄(H(i)) = I⊗i ⊗H ⊗ I⊗n−i−1, v̄(X(i)) = I⊗i ⊗X ⊗ I⊗n−i−1,

v̄(Y(i)) = I⊗i ⊗ Y ⊗ I⊗n−i−1, v̄(Z(i)) = I⊗i ⊗Z ⊗ I⊗n−i−1,

v̄(S(i)) = I⊗i ⊗ |0⟩⟨0| ⊗ I⊗n−i−1 + I⊗i ⊗ i · |1⟩⟨1| ⊗ I⊗n−i−1,

v̄(T(i)) = I⊗i ⊗ |0⟩⟨0| ⊗ I⊗n−i−1 + I⊗i ⊗ (1 + i)/
√
2 · |1⟩⟨1| ⊗ I⊗n−i−1,

v̄(CX(i, j)) = I⊗i ⊗ |0⟩⟨0| ⊗ I⊗n−i−1 + (I⊗i ⊗ |1⟩⟨1| ⊗ I⊗n−i−1)(I⊗j ⊗X ⊗ I⊗n−j−1),

v̄(CY(i, j)) = I⊗i ⊗ |0⟩⟨0| ⊗ I⊗n−i−1 + (I⊗i ⊗ |1⟩⟨1| ⊗ I⊗n−i−1)(I⊗j ⊗ Y ⊗ I⊗n−j−1),

v̄(CZ(i, j)) = I⊗i ⊗ |0⟩⟨0| ⊗ I⊗n−i−1 + (I⊗i ⊗ |1⟩⟨1| ⊗ I⊗n−i−1)(I⊗j ⊗Z ⊗ I⊗n−j−1),

v̄(SWAP(i, j)) = v̄(CX(i, j))× v̄(CX(j, i))× v̄(CX(i, j)),

v̄(CCX(i, j, k)) = I⊗i ⊗ |0⟩⟨0| ⊗ I⊗j−i−1 ⊗ I ⊗ I⊗k−j−1 ⊗ I ⊗ I⊗n−k−1

+ I⊗i ⊗ |1⟩⟨1| ⊗ I⊗j−i−1 ⊗ |0⟩⟨0| ⊗ I⊗k−j−1 ⊗ I ⊗ I⊗n−k−1,

+ I⊗i ⊗ |1⟩⟨1| ⊗ I⊗j−i−1 ⊗ |1⟩⟨1| ⊗ I⊗k−j−1 ⊗ |0⟩⟨1| ⊗ I⊗n−k−1,

+ I⊗i ⊗ |1⟩⟨1| ⊗ I⊗j−i−1 ⊗ |1⟩⟨1| ⊗ I⊗k−j−1 ⊗ |1⟩⟨0| ⊗ I⊗n−k−1,

v̄(CCZ(i, j, k)) = I⊗i ⊗ |0⟩⟨0| ⊗ I⊗j−i−1 ⊗ I ⊗ I⊗k−j−1 ⊗ I ⊗ I⊗n−k−1

+ I⊗i ⊗ |1⟩⟨1| ⊗ I⊗j−i−1 ⊗ |0⟩⟨0| ⊗ I⊗k−j−1 ⊗ I ⊗ I⊗n−k−1,

+ I⊗i ⊗ |1⟩⟨1| ⊗ I⊗j−i−1 ⊗ |1⟩⟨1| ⊗ I⊗k−j−1 ⊗ |0⟩⟨0| ⊗ I⊗n−k−1,

− I⊗i ⊗ |1⟩⟨1| ⊗ I⊗j−i−1 ⊗ |1⟩⟨1| ⊗ I⊗k−j−1 ⊗ |1⟩⟨1| ⊗ I⊗n−k−1,

v̄(CSWAP(i, j, k)) = I⊗i ⊗ |0⟩⟨0| ⊗ I⊗j−i−1 ⊗ I ⊗ I⊗k−j−1 ⊗ I ⊗ I⊗n−k−1

+ I⊗i ⊗ |1⟩⟨1| ⊗ I⊗j−i−1 ⊗ |0⟩⟨0| ⊗ I⊗k−j−1 ⊗ |0⟩⟨0| ⊗ I⊗n−k−1,

+ I⊗i ⊗ |1⟩⟨1| ⊗ I⊗j−i−1 ⊗ |0⟩⟨1| ⊗ I⊗k−j−1 ⊗ |1⟩⟨0| ⊗ I⊗n−k−1,

+ I⊗i ⊗ |1⟩⟨1| ⊗ I⊗j−i−1 ⊗ |1⟩⟨0| ⊗ I⊗k−j−1 ⊗ |1⟩⟨0| ⊗ I⊗n−k−1,

where

I⊗i =

i︷ ︸︸ ︷
I ⊗ · · · ⊗ I .

Note that |0⟩⟨0| , |0⟩⟨1| , |1⟩⟨0|, and |1⟩⟨1| are represented by B0, B1, B2, and
B3 from the definition in Section 2.2. If we replace I ,X ,Y ,Z , and H above by
the linear combination of B0, B1, B2, and B3 as defined in Section 2.2, we can
reduce each unitary quantum gate to a canonical form of a linear combination of
the tensor product of B0, B1, B2, and B3 (i.e., |0⟩⟨0| , |0⟩⟨1| , |1⟩⟨0|, and |1⟩⟨1|)
by using the laws in Section 2.2.
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Theorem 2. Each unitary matrix is represented by a canonical form of a linear
combination of the tensor product of |0⟩⟨0| , |0⟩⟨1| , |1⟩⟨0|, and |1⟩⟨1| with scalars
with respect to the number n of qubits in a Hilbert space H.

Proof. Each tensor product of |0⟩⟨0| , |0⟩⟨1| , |1⟩⟨0|, and |1⟩⟨1| with respect to the
number n of qubits produces a unique 2n × 2n matrix where only one distinct
element of the matrix is one and the others are zero. Therefore, any unitary
matrix can be represented by a canonical form of a linear combination of the
tensor product of |0⟩⟨0| , |0⟩⟨1| , |1⟩⟨0|, and |1⟩⟨1| with scalars. ⊓⊔

Using Theorem 2, we can use symbolic reasoning in Section 2.2 to reduce any
unitary matrix or multiplication of unitary matrices to a canonical form, which
is a linear combination of the tensor product of |0⟩⟨0| , |0⟩⟨1| , |1⟩⟨0|, and |1⟩⟨1|
with scalars with respect to the number of qubits used in quantum circuits.

Theorem 3. Each quantum state is represented by a canonical form of a linear
combination of the tensor product of computational basis vectors |0⟩ and |1⟩ with
scalars with respect to the number n of qubits in a Hilbert space H.

Proof. It is immediate from the definition of a quantum state. ⊓⊔

Based on Theorem 2 and Theorem 3, the multiplication of a quantum gate
and a quantum state produces a new quantum state, which also has to be in a
canonical form.

5 A Support Tool

We use Maude [4], a high-level specification/programming language based on
rewriting logic [13], to develop a support tool called |QCEC⟩ for the equivalence
checking of quantum circuits. Symbolic reasoning described in Section 2.2 is
adopted in |QCEC⟩ for reasoning about quantum computation, which actually
is matrix calculation with Dirac notation and scalars under the laws of quantum
mechanics and matrix operations. The specification of quantum states, quan-
tum gates, and quantum circuits is specified in |QCEC⟩. The function v̄ is also
developed to map an action to an actual unitary matrix in Dirac notation.

We are now ready to develop the function equivCheck to determine the
equivalence of two quantum circuits based on Algorithm 1. For brevity, we only
describe the specification for equivCheck and the Maude syntax is used with-
out detailed explanation as follows:

op equivCheck : ActionList ActionList Info -> Bool .
ceq equivCheck(AL, AL’, IF) = checkWithBasis(AL, AL’, IF, N)
if N := findN(AL AL’) .

equivCheck takes as inputs two action lists AL and AL’ of sort ActionList
and possibly constant inputs IF of sort Info, and then returns a Boolean value
indicating the result of the equivalence problem. We first find the number N of
qubits using the function findN and then begin checking with the function
checkWithBasis, which is defined as follows:
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op checkWithBasis : ActionList ActionList Info Nat -> Bool .
eq checkWithBasis(AL,AL’,IF,N) = firstCheck(AL,AL’,IF,N,2ˆN,0) .

checkWithBasis takes as inputs AL, AL’ , IF, and N, and then initializes
the number MAX (i.e., 2ˆN) of basis vectors and considers the first basis vec-
tor associated with index 0 for the function firstCheck, which is defined as
follows:

op firstCheck : ActionList ActionList Info Nat Nat Nat
-> Bool .

ceq firstCheck(AL, AL’, IF, N, MAX, 0) =
if (V0 x (V0)ˆ+) == (V0’ x (V0’)ˆ+) then

nextCheck(AL, AL’, IF, N, MAX, 1, V0, V0’)
else false fi

if Phi := basis(0, N) /\ V0 := calWithBasis(AL, Phi)
/\ V0’ := calWithBasis(AL’, Phi) .

where (V0)ˆ+ and (V0’)ˆ+ denote the conjugate transpose of V0 and V0’, re-
spectively. firstCheck is the initial checking step for the equivalence problem
by considering the first basis vector. We prepare the basis vector Phi (i.e., |ϕ0⟩
in Algorithm 1) using the function basis with the given inputs 0 and N; calcu-
late the vector V0 (i.e., |u0⟩ in Algorithm 1) using the function calWithBasis
with the given inputs AL and Phi; and perform a similar process for the vector
V0’ (i.e., |u′0⟩ in Algorithm 1). We then check whether the density matrices of
V0 and V0’ are equal. If they are not, false is returned. Otherwise, we move
to check for the next basis vector associated with index 1 using the function
nextCheck. Because we need to consider the same global phase for all basis
vectors, V0 and V0’ are also passed to nextCheck, which is defined as follows:

op nextCheck : ActionList ActionList Info Nat Nat Nat Vect
Vect -> Bool .

ceq nextCheck(AL, AL’, IF, N, MAX, IDX, V0, V0’) =
if (isNecessary(IDX, N, getConst(IF))) then

basisCheck(AL, AL’, IF, N, MAX, IDX, V0, V0’)
else nextCheck(AL, AL’, IF, N, MAX, IDX + 1, V0, V0’) fi

if IDX < MAX .
eq nextCheck(AL,AL’,IF,N,MAX,IDX,V0,V0’) = true [owise] .

nextCheck examines the equivalence problem by considering the current
basis vector associated with the index IDX. If IDX is less than MAX, meaning
that all basis vectors have been checked, true is returned. Otherwise, we check
whether the current basis vector should be considered according to the constant
inputs using the function isNecessary, where the function getConst is used
to obtain the constant input information. If that is not the case, we move to
check the next basis vector by incrementing IDX and calling nextCheck again.
Otherwise, we check the equivalence problem with the current basis vector using
the function basisCheck, which is defined as follows:

op basisCheck : ActionList ActionList Info Nat Nat Nat Vect
Vect -> Bool .
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ceq basisCheck(AL, AL’, IF, N, MAX, IDX, V0, V0’) =
if (V x (V)ˆ+) == (V’ x (V’)ˆ+) then

if (V0 x (V)ˆ+) == (V0’ x (V’)ˆ+) then
nextCheck(AL, AL’, IF, N, MAX, IDX + 1, V0, V0’)

else false fi
else false fi

if Phi := basis(IDX, N) /\ V := calWithBasis(AL, Phi)
/\ V’ := calWithBasis(AL’, Phi) .

basisCheck first calculates the basis vector Phi associated with the index
IDX (i.e., |ϕi⟩ in Algorithm 1), the vector V (i.e., |ui⟩ in Algorithm 1), and the
vector V’ (i.e., |u′i⟩ in Algorithm 1). It then checks whether the density matrices
of V and V’ are equal, and whether the same global phase is shared between
V0 and V, and V0’ and V’. If that is the case, we move to check the next basis
vector by incrementing IDX and calling nextCheck again. Otherwise, false is
returned.

Thereby, the whole process of the function equivCheck for checking the
equivalence of two quantum circuits represented by A0 . . . Am and A′

0 . . . A
′
m′

can be conducted automatically using the following command in Maude:

red equivCheck(A0 . . . Am, A′
0 . . . A

′
m′) .

6 Case Studies

We used |QCEC⟩ to confirm the equivalence of many quantum circuits in [9]
for various groups of case studies, such as Control Reversal, Distributed CNOT,
CNOT Minor, Parallel to Λ CNOT, and Quantum State Transfer. Additionally,
we modified their circuits and confirmed their non-equivalence as well. The modi-
fication was conducted by randomly dropping a quantum gate or changing the in-
dices to which a quantum gate is applied. The experiments were conducted with
an iMac that carries a 4 GHz microprocessor with eight cores and 32 GB memory
of RAM. All experiments were completed in a few seconds as shown in Table 2,
demonstrating the effectiveness of our approach. |QCEC⟩ and case studies are
publicly available at https://github.com/canhminhdo/ket-qcec.

For the sake of simplicity, we only present how to use |QCEC⟩ to confirm
the equivalence of some quantum circuits for Superdense coding [2] as a state
transfer [9] and also point out in which cases these quantum circuits are not
equivalent. The four circuits shown in Figure 1 were considered equivalent cir-
cuits to represent Superdense coding as a state transfer in [9] if the third and
fourth qubits are initially fixed to |0⟩ at the beginning of the computation. We
adopt the specification of quantum circuits presented in Section 4 to describe
the behavior of quantum circuits as action lists. Therefore, the action lists of the
four quantum circuits are described in order as follows:

AL1 = CX(1,3) CX(0,2)
AL2 = CX(1,3) H(2) CZ(0,2) H(2)
AL3 = H(2) CX(1,2) CX(1,3) CZ(0,2) H(2)
AL4 = H(2) CX(2,3) CX(1,2) CZ(0,2) CX(2, 3) H(2)

37

https://github.com/canhminhdo/ket-qcec


C.M. Do and K. Ogata

q0 : |ψ⟩ |ψ⟩
q1 : |φ⟩ |φ⟩
q2 : |0⟩ |ψ⟩

q3 : |0⟩ |φ⟩

≡

|ψ⟩ |ψ⟩
|φ⟩ |φ⟩

|0⟩ H Z H |ψ⟩

|0⟩ |φ⟩

≡

|ψ⟩ |ψ⟩
|φ⟩ |φ⟩

|0⟩ H Z H |ψ⟩

|0⟩ |φ⟩

≡

|ψ⟩ |ψ⟩
|φ⟩ |φ⟩

|0⟩ H Z H |ψ⟩

|0⟩ |φ⟩

Fig. 1: Superdense coding as a state transfer

We check whether the four quantum circuits are equivalent by using the
following commands:

red equivCheck(AL1, AL2) .
red equivCheck(AL3, AL4) .
red equivCheck(AL2, AL3) . --- not equivalent to any inputs
red equivCheck(AL2, AL3, const: (2, 3)) .

The first two commands return true and so we can conclude the equivalence
of the first and second quantum circuits and the equivalence of the third and
fourth quantum circuits with any inputs. The third command returns false, in-
dicating that the second and third quantum circuits are not equivalent with any
inputs. However, if we use constant inputs for the third and fourth qubits as
reported in [9], the fourth command returns true again. This result confirms
the equivalence of the second and third quantum circuits under this condition.
The state-of-the-art tools in [3,17] do not take into account the constant inputs,
and so they simply conclude that the second and the third quantum circuits are
non-equivalent, while they are actually equivalent under the condition that the
constant inputs are used. Therefore, using our approach and |QCEC⟩ is more
reliable in this situation. These experiments demonstrate the effectiveness of our
approach and |QCEC⟩ for checking the equivalence of quantum circuits.

The experimental results for our case studies are summarized in Table 2. The
first and second columns denote the groups of case studies, each of which contains
several quantum circuits, and their corresponding number of qubits, respectively.
The third column shows the execution time required to confirm the equivalence
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Table 2: Experimental results

Quantum Circuits Qubits
Time for Time for

Equivalence Cases Non-equivalence Cases

Control Reversal 2 6ms 1ms

Distributed CNOT 3 1ms ≈ 0ms

CNOT Minor 3 3ms 1ms

Parallel to Λ CNOT 3 1ms ≈ 0ms

Quantum State Transfer 4 16ms 4ms

of quantum circuits used for each group. Similarly, the last column shows the
execution time for confirming the non-equivalence of modified quantum circuits,
where some gates are randomly dropped or the indices to which a gate is applied
are changed. Note that we checked the equivalence of several quantum circuits
for each group and selected the longest execution time, as shown in the third and
fourth columns. All experiments were completed in a few seconds, demonstrating
the effectiveness of our approach and |QCEC⟩ in checking the equivalence of both
equivalent and non-equivalent quantum circuits. Although the number of qubits
used for quantum circuits in our case studies is small, the execution time for
non-equivalence cases is rather smaller than that for equivalence cases. This
discrepancy arises because fewer iterations are needed to decide the equivalence
problem for the former cases, whereas the latter cases require as many iterations
as the number of basis vectors. Therefore, our approach becomes faster than the
actual matrix equivalence check, particularly in cases involving non-equivalent
quantum circuits. As part of our future work, we aim to extend our symbolic
reasoning to handle a broader range of quantum gates, enabling the treatment
of more complicated quantum circuits. Additionally, we plan to conduct more
case studies involving a larger number of qubits to further demonstrate the
effectiveness of our approach and |QCEC⟩.

7 Related Work

There are two main approaches to equivalence checking of quantum circuits:
one based on quantum decision diagrams [3] and the other based on the ZX
calculus [17].

L. Burgholzer and R. Wille [3] have proposed an advanced method for equiv-
alence checking of quantum circuits based on a decision diagram. Their approach
involves two quantum circuits U = Um . . . U0 and U ′

m′ . . . U ′
0 as inputs and they

check whether the two quantum circuits are equivalent. They leverage two key
observations: (1) quantum circuits are inherently reversible, and (2) even small
differences in quantum circuits may impact the overall behavior of quantum cir-
cuits. Their strategy is as follows. For (2), they first randomly prepare some basis
vectors |ϕi⟩ and calculate the i-th column of each matrix U and U ′ to obtain |ui⟩
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and |u′i⟩ as we do. They then compare |ui⟩ and |u′i⟩ modulo the global phase by
using the fidelity, denoted F = | ⟨ui|u′i⟩ |2, to measure the overlap between the
two states. The two states are considered equivalent if the fidelity between them
is 1 up to a given tolerance ε. This is an approximate estimation, while we use
their density matrices for the comparison, which provides an exact estimation.
After several runs, if they find |ui⟩ and |u′i⟩ that are not equivalent, the process
is stopped. Otherwise, they attempt to resolve U ⇒ I ⇐ U ′ into the identity
matrix I based on (1) to solve the equivalence checking problem. However, cal-
culating Ui(U

′
i′)

† involves an expensive matrix-matrix multiplication. We have
proven a theorem that it suffices to consider all basis vectors in an orthonormal
basis to conclude the equivalence checking problem. Our approach also takes the
global phase into account. Additionally, they use a decision diagram to encode
quantum states and quantum gates, while we use Dirac notation. Disregarding
the encoding is used, our strategy to check the equivalence of quantum circuits
can be adopted by other approaches.

T. Peham et al. [17] proposed equivalence checking of quantum circuits with
the ZX calculus. The ZX calculus is a graphical notation for quantum circuits
equipped with a powerful set of rewrite rules that enable a graphical rewriting
system for quantum computation. Given two quantum circuits U and U ′, they
produce their corresponding representations as ZX-diagrams D and D′. These
diagrams are then combined into D†D′ and simplified using the set of rewrite
rules. If the result is in the form of the identity diagram, they can conclude their
equivalence. Otherwise, nothing can be concluded because there are multiple
forms for a ZX diagram in general. This approach is intuitive when we can see
which rewrite rules are used and how ZX diagrams are changed accordingly. Our
approach based on Dirac notation may be less intuitive, but it has never failed
to conclude the equivalence of two quantum circuits, while their approach may
fail to prove the equivalence of two equivalent quantum circuits.

8 Conclusion

We have presented an approach for checking the equivalence of quantum circuits
based on Dirac notation. The equivalence checking process is simplified to com-
paring each column vector of two unitary matrices, representing two quantum
circuits, modulo the same global phase. To eliminate the global phase during the
comparison, we compare their corresponding density matrices instead of their
column vectors. Moreover, our approach can take into account the constant in-
puts, making it more reliable in determining the equivalence problem compared
to state-of-the-art tools in [3,17]. We have used Maude to develop the so-called
|QCEC⟩ tool for our approach based on the algorithm derived from our main
theorem. Several case studies have been conducted with |QCEC⟩, demonstrating
the effectiveness of our approach and |QCEC⟩. In addition to the future work
discussed in the paper, we also aim to integrate our approach into the state-of-
the-art tool presented in [3,24] to leverage its powerful simulation capabilities
for quantum computation in checking the equivalence of quantum circuits.
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Abstract. Social media platforms have played a key role in weaponiz-
ing the polarization of social, political, and democratic processes. This
is, mainly, because they are a medium for opinion formation. Opinion
dynamic models are a tool for understanding the role of specific social
factors on the acceptance/rejection of opinions and they can be used
to analyze certain assumptions on human behaviors. This work presents
a framework that uses concurrent set relations as the formal basis to
specify, simulate, and analyze social interaction systems with dynamic
opinion models. Standard models for social learning are obtained as par-
ticular instances of the proposed framework. It has been implemented in
the Maude system as a fully executable rewrite theory that can be used to
better understand how opinions of a system of agents can be shaped. This
paper also reports an initial exploration in Maude on the use of reach-
ability analysis, probabilistic simulation, and statistical model checking
of important properties related to opinion dynamic models.

Keywords: Concurrent set relations · opinion dynamic models · social
interaction systems · belief revision · rewriting logic · formal verification

1 Introduction

Social media platforms have played a key role in the polarization of social, po-
litical, and democratic processes. Social uprisings in the Middle East, Asia, and
Central and South America have led to sudden changes in the structure and
nature of society during this past decade [20,12,6,15,30,19]. Polarization across
the globe has paved the way to the divergence of political attitudes away from
the center, towards ideological extremes, sometimes resulting in fractured insti-
tutions, erratic policy making, incipient political dialog, and the resurgence of
old discredited regimes [13,18,22,20,11,16]. Democracy, viewed as a system of
power controlled by the people, has been made vulnerable by severe polariza-
tion as opposing sides are seen as adversaries that compete against an enemy
⋆ This work has been partially supported by the SGR project PROMUEVA (BPIN

2021000100160) under the supervision of Minciencias (Ministerio de Ciencia Tec-
nología e Innovación, Colombia).
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needing to be vanquished. As a result, popular election campaigns –including
presidential ones– have compromised the basic principles of democratic election
in some countries [4,29,28,3]. All these scenarios have a common factor: social
media interaction as a medium for opinion formation fueling polarization.

Social learning and opinion dynamic models have been developed to under-
stand the role of specific social factors on the acceptance/rejection of opinions,
such as the ones communicated via social media (see, e.g., [14,2,17,8]). They are
often used to validate how certain assumptions on human behaviors can explain
alternative scenarios, such as opinion consensus, polarization, and fragmenta-
tion. In their micro-level approach, the one followed in the present work, users
are considered as agents that can share opinions on a given topic. They up-
date their opinion by interacting with a selected group of users that have some
influence on them (e.g., influencers, their family and friends). These dynamics
take place at discrete time steps at which (some) agents update their opinion.
For instance, an opinion model can deterministically update the opinion of all
agents in such a time-step, while another one can non-deterministically update
the opinion of a single agent. Depending on the model of choice, which usually
defines its own update function for the individual agents, phenomena under dif-
ferent assumptions can be observed. The ultimate goal is to understand how the
opinions of the agents, as a social system, are shaped after a certain number of
steps.

This work proposes a framework that uses concurrent set relations as the
formal basis to specify, simulate, and analyze social interaction systems with
dynamic opinion models. The framework uses influence graphs to specify the
structure of agent interactions in the social system under study: vertices repre-
sent agents and a directed weighted edge from a to b represents the weighted
influence of agent’s a opinion over the opinion of agent b. In the sense of set
relations in [25], the framework comprises two main mechanisms that are com-
bined via closures for specifying opinion dynamics over the graphs: namely, an
atomic set relation and a strategy. The atomic set relation updates the opinion
of a single vertex with respect to a set of edges (and the corresponding ver-
tices) incident to it. The strategy selects the edges that will be used to update
in parallel (i.e., synchronously) the opinion associated to the vertices with edges
incident to it in the given set. As a consequence, dynamic opinion models can
be formalized as a concurrent set relation system, with parametric update func-
tion, using the composition of an atomic relation and a strategy via closures.
An important observation is that the determinism or non-determinism inherent
to a given opinion dynamic model is exactly captured by the deterministic or
non-deterministic nature of the corresponding concurrent set relation.

Standard models for social learning are obtained as particular instances of
the proposed framework. The classical DeGroot opinion model [9] is obtained as
the synchronous closure under the maximal redices strategy of a given atomic set
relation. In a similar fashion, gossip-based models that use pairwise interactions
to represent the opinion formation process (see, e.g., [10]) are obtained via the
asynchronous closure where the strategy selects single edges for the given atomic
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set relation. Other opinion models can be obtained via the synchronous closure of
an atomic set relation, as midpoints between De Groot and gossip-based models.

The proposed framework is implemented in the Maude system [7]. It is a
rewrite theory that exploits the reflective capabilities of rewriting logic and that
can be instantiated to the opinion model of interest. A state is an object-like
configuration representing the structure of the system and its opinion values.
An object is either an agent u with its opinion ou, specified as ⟨u : ou⟩, or the
influence of agent u over agent v with weight iuv, specified as ⟨(u, v) : iuv⟩. The
update function µ of each specific model is to be defined equationally. The im-
plementation of both the atomic set relation and the strategy is inspired by the
ideas in [24]. The atomic set relation is axiomatized as a (non-executable) rewrite
rule that takes as input an agent ⟨u : ou⟩ and a set of edges A ⊆ E in the current
state. For a given state, it updates the opinion ou to a new opinion o′u using µ,
and the opinion and influence of agents adjacent to it w.r.t. A. As a result, each
atomic step rewrites a single object ⟨u : ou⟩ to its updated version ⟨u : o′u⟩. The
metalevel is used to apply the atomic rewrite rule over the agents in a state
according to the edges selected by the given strategy: only agents appearing as
targets of the directed edges can have their opinion updated. This strategy is
defined equationally by the user and computes a collection of subsets of E: a
parallel rewrite step under the maximal redices strategy is performed for each
subset A of edges. Since the atomic rewrite relation is deterministic, the strat-
egy is the only source of non-determinism in the system and a concurrent step is
made for each identified subset A. The implementation of the proposed frame-
work results in a fully executable object-like rewrite theory in Maude. This tool
can be used to better understand how opinions of a system of agents are shaped
–and to ultimately understand polarization— using formal methods techniques,
such as reachability analysis and temporal model checking.

This work is part of a broader effort to make available computational ideas
and approaches for analyzing phenomena in social networks, such as polarization,
consensus, and fragmentation. They include concurrency models, modal and
probabilistic logics, and formal methods frameworks, techniques, and tools. In
this context, the work presented here is a first step towards the use of rewriting
logic for such purposes. As explained in the sections that follow, one major
problem a opinion dynamic model may face is that of state space explosion. An
initial exploration on the use of probabilistic simulation and statistical analysis
to deal with this problem is reported in this work. However, the extension of the
proposed framework to a fully probabilistic setting, in which –e.g.– the strategy
selects the set of edges according to a probability distribution function, falls
outside the scope of this paper. It needs to be further explored as future work as
it may open the door to statistical model checking of novel properties using a new
breed of measures, thus paving the way to the analysis of quantitative properties
beyond the reach of techniques currently available for opinion dynamic models.

Organization. After recalling the notion of set relations in Section 2, Section 3
shows how different models for social learning can be seen as particular instances
(atomic set relation and strategy) of this framework. The implementation in
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Maude is described in Section 4, while different analyses performed on the pro-
posed rewrite theory are introduced in Section 5. Section 6 concludes the paper.
The full Maude specification supporting the set relations framework is available
at [23], as companion tool to the paper.

2 Set Relations

This section introduces set relations and their notation, as used in this paper. It
defines the asynchronous, parallel, and synchronous set relations as closures of
an atomic set relation. This section is based mainly on [25].

Let U be a set whose elements are denoted A,B, . . . and let → be a binary
relation on U . An element A of U is called a →-redex iff there exists B ∈ U such
that the pair ⟨A;B⟩ ∈ →. The expressions A→B and A ̸→B denote ⟨A;B⟩ ∈ →
and ⟨A;B⟩ ̸∈ →, respectively. The identity and reflexive-transitive closures of →
are defined as usual and denoted 0→ and ∗→, respectively.

It is assumed that U is the family of all nonempty finite subsets of an abstract
and possibly infinite set T whose members are called elements (i.e., U ⊆ P (T ),
∅ ̸∈ U , and if A ∈ U , then card (A) ∈ N ). Therefore, → is a binary relation on
finite subsets of elements in T . When it is clear from the context, curly brackets
are omitted from set notation; e.g., a, b→ b denotes {a, b}→{b}. Because this
convention, the symbol ‘,’ is overloaded to denote set union. For example, if A
denotes the set {a, b}, B the set {c, d}, and D the set {d, e}, the expression
A,B→B,D denotes a, b, c, d→ c, d, e.

Given a set of elements, in the asynchronous set relation exactly one redex
is selected to be updated.

Definition 1 (Asynchronous Set Relation). The asynchronous relation □→
is defined as the asynchronous closure of →, i.e., the set of pairs ⟨A;B⟩ ∈ U ×U
such that A □→B iff there exists a →-redex A′ ⊆ A and an element B′ ∈ U such
that A′ →B′ and B = (A \A′) ∪B′.

In the parallel set relation, a nonempty collection of redices is identified to
be updated in parallel (i.e., without interleaving).

Definition 2 (Parallel Set Relation). The parallel relation
||→ is defined

as the parallel closure of →, i.e., the set of pairs ⟨A;B⟩ ∈ U × U such that

A
||→B iff there exist (nonempty) pairwise disjoint →-redices A1, . . . , An ⊆ A,

and elements B1, . . . , Bn in U such that Ai →Bi, for 1 ≤ i ≤ n, and B =(
A \

⋃
1≤i≤nAi

)
∪
(⋃

1≤i≤nBi

)
.

The synchronous set relation s→ applies as many atomic reductions as pos-
sible, in parallel. However, in contrast to the previous two closures, the redices
are selected with the help of a strategy s, namely, a function that identifies a
nonempty subset of redices. As a consequence, the synchronous set relation is
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a subset of the parallel set relation. It is important to note that the notion of
strategy used for defining the synchronous closure of the atomic set relation is
different to the one introduced in Section 1 for the framework; the name used in
this section is kept from [25].

Definition 3 (→-strategy). A →-strategy is a function s that maps any ele-
ment A ∈ U into a set s(A) ⊆ P (→) such that if s(A) = {⟨A1;B1⟩ , . . . ⟨An;Bn⟩},
then Ai ⊆ A and Ai →Bi, for 1 ≤ i ≤ n, and A1, . . . , An are pairwise disjoint.

Definition 4 (Synchronous Relation). Let s be a →-strategy. The syn-
chronous relation s→ is defined as the synchronous closure of → w.r.t. s, i.e.,
the set of pairs ⟨A;B⟩ ∈ U × U such that A s→B iff B =

(
A \

⋃
1≤i≤nAi

)
∪(⋃

1≤i≤nBi

)
where s(A) = {⟨A1;B1⟩ , . . . ⟨An;Bn⟩}.

This section is concluded with an example that illustrates the notions intro-
duced so far.

Vaccine Example. Consider the directed weighted graph G = (V,E, i) in
Figure 1. It represents a social system with six agents V = {a, b, c, d, e, f} and
twelve opinion influences. The label i(u, v) associated to each edge (u, v) from
agent u to agent v denotes the opinion influence iuv = i(u, v) of agent u over
the opinion of agent v (about a given topic): these values are in the real interval
[0, 1] (i.e., i : E → [0, 1]); the higher the value, the stronger the influence. In
this example, the influence of f over a is the strongest possible. Notice that
agents may also have self-influence, representing agents whose opinion need not
be completely influenced by the opinion of the others.

The initial opinions (or beliefs) of the agents are depicted within the box
below each node. They are specified by a function o : V → [0, 1], which is
assumed to represent the opinion value ou = o(u) of each agent u on the given
topic. The greater the value, the stronger (weaker) the agreement (disagreement)
with the proposition, and 0 represents total disagreement. In this example such
a proposition is vaccines are safe. Intuitively, the agents a, b, and c are in strong
disagreement with vaccines being safe (the anti-vaxxers) and the rest are in
strong agreement (the pro-vaxxers).

Notice that although a is the most extreme anti-vaxxer, the most extreme
pro-vaxxer f has a strong influence over a. Hence, it is expected that the evolu-
tion of a’s opinion will be highly influenced by the opinion of f . In general, an
agent’s opinion evolution takes into account a subset of its influences, as will be
explained shortly.

Recall the object-like notation in Section 1. The set of elements T is made of
pairs of the form ⟨u : r⟩ or ⟨(u, v) : r⟩, with u, v ∈ V , (u, v) ∈ E, and r ∈ [0, 1].
The graph in Figure 1 can be specified as the set of elements Γ :

Γ = { ⟨a : 0.0⟩ , ⟨b : 0.1⟩ , ⟨c : 0.15⟩ , ⟨d : 0.82⟩ , ⟨e : 0.89⟩ , ⟨f : 0.92⟩ ,
⟨(a, b) : 0.6⟩ , ⟨(a, c) : 0.4⟩ , ⟨(b, d) : 0.6⟩ , ⟨(c, e) : 0.6⟩ , ⟨(d, c) : 0.2⟩ , ⟨(d, f) : 0.4⟩ ,
⟨(e, f) : 0.6⟩ , ⟨(f, a) : 1.0⟩ , ⟨(b, b) : 0.4⟩ , ⟨(c, c) : 0.4⟩ , ⟨(d, d) : 0.4⟩ , ⟨(e, e) : 0.4⟩}.
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Fig. 1: Graph representing opinion and influence interaction in a social system.
Initial opinions are given within the box below each node. The labels on each
edge (u, v) represent the influence value of agent u over agent v.

The atomic relation →A is defined over elements representing agents and is
parametric on a set A of elements representing edges in Γ . In this example, it
follows the pattern

⟨u : ou⟩ →A

〈
u :

∑
⟨(x,u):ixu⟩∈A

ox · ixu∑
⟨(y,u):iyu⟩∈A iyu

〉
, (1)

where the summation in the denominator is assumed to be non-zero. The opinion
ou of an agent u w.r.t. to A is updated to be the weighted average of the opinion
values of those agents adjacent to u and whose influence is present in A. For
instance, let A = {⟨(a, b) : 0.6⟩ , ⟨(b, b) : 0.4⟩ , ⟨(c, e) : 0.6⟩}. Then, the atomic set
relation →A has the following two pairs:

⟨b : 0.1⟩ →A ⟨b : 0.04⟩ ⟨e : 0.89⟩ →A ⟨e : 0.15⟩ .

In the case of agent b, its opinion is updated to 0.04 = 0.0 · 0.61.0 +0.1 · 0.41.0 because,
w.r.t. A, it is influenced both by itself and by agent a, whose opinion value is
0.0 and influence over b is 0.6. In the case of agent e, its opinion is influenced
only by agent c. In this case, the value is updated to 0.15 = 0.15 · 0.6

0.6 . It can be
said that, w.r.t. A, agent e acts like a puppet whose own opinion is not taken
into account when it is updated.

The asynchronous closure of →A has exactly two pairs, one for each redex
determined by →A (i.e., one for agent b and another for agent e):

Γ
□→A (Γ \ {⟨b : 0.1⟩}) ∪ {⟨b : 0.04⟩} Γ

□→A (Γ \ {⟨e : 0.89⟩}) ∪ {⟨e : 0.15⟩}.

The parallel closure
||→ has three pairs: one in which the opinions of both b and

e are updated, in addition to the same two pairs present in the asynchronous
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closure:

Γ
||→A (Γ \ {⟨b : 0.1⟩}) ∪ {⟨b : 0.04⟩}

Γ
||→A (Γ \ {⟨e : 0.89⟩}) ∪ {⟨e : 0.15⟩}

Γ
||→A (Γ \ {⟨b : 0.1⟩ , ⟨e : 0.89⟩}) ∪ {⟨b : 0.04⟩ , ⟨e : 0.15⟩}.

Finally, to illustrate the synchronous closure of →, let s = A be the strategy.
That is, all redices in →A are identified to be reduced. Therefore, this relation
has the only pair in which the opinions of both b and e are updated in parallel:

Γ
s→A (Γ \ {⟨b : 0.1⟩ , ⟨e : 0.89⟩}) ∪ {⟨b : 0.04⟩ , ⟨e : 0.15⟩}.

3 Opinion Dynamic Models

This section shows how opinion dynamic models can be specified as set relations
(see Section 2). In particular, a gossip-based and the classical De Groot opinion
models are introduced, as well as a generalization of De Groot and gossip (under
some conditions), here called the hybrid opinion model.

The three above-mentioned models are defined, as stated in Section 2, over a
directed weighted graph G = (V,E, i) representing a social system, with agents
V , directed opinion influences E ⊆ V × V , and influence values i : E → [0, 1]. A
given topic (i.e., proposition) is fixed. The weight iuv = i(u, v) associated to each
edge (u, v) ∈ E from agent u to agent v denotes the opinion influence value of
agent u over the opinion value of agent v on the given topic. The opinion value
ou = o(u) ∈ [0, 1] associated to each agent u ∈ V in the given topic is assumed
to be known by all agents in the system. As in Section 2, the higher the value
of a opinion (resp., influence), the stronger the agreement (resp., influence).

The set of elements T in the set relations framework is made of pairs of
the form ⟨u : r⟩ or ⟨(u, v) : r⟩, with u, v ∈ V , (u, v) ∈ E, and r ∈ [0, 1]. A G-
configuration (or configuration) is the set of elements in T that exactly represent
the structure of G, and the values of opinions and influences. Therefore, in the
rest of this section, it is assumed that any configuration Γ can be partitioned
in two sets Γo and Γi, respectively containing elements of the form ⟨u : ou⟩
specifying opinions and ⟨(u, v) : iuv⟩ specifying influences.

A model specifies how opinions (associated to agents) can be updated. Each
model definition comprises three pieces; namely, an atomic relation, a strategy,
and an update function for opinions. Therefore, a model specifies how a G-
configuration Γ = Γo ∪ Γi can change to another G-configuration Γ ′ = Γo′ ∪ Γi,
where only opinions are updated. It is important to note that the notion of
strategy introduced in this section generalizes the notion of strategy introduced
in Section 2, as will be explained later.

The atomic relation is defined in Section 3.1 for the three models. Each model
is introduced by identifying a specific strategy and a specific update function in
subsequent sections.

49



Olarte, Ramírez, Rocha, and Valencia.

3.1 The Atomic Relation

The atomic relation →A is parametric on a subset A ⊆ Γi and defines how the
opinion of a single agent may evolve. The set of influences A directly identifies
the influences (and indirectly the opinions) to update the opinion of each agent
in the configuration Γ (i.e., in Γo). For each one of the three models, the atomic
relation →A follows the pattern:

⟨u : ou⟩ →A ⟨u : µ(Γ,A, u)⟩ , (A-Rel)

where µ is the update function specific to each model. This function takes as
input a G-configuration (e.g., Γ ), a subset of its influences (e.g., A), and the
agent whose opinion is to be updated (e.g., u), and outputs the new opinion for
agent u w.r.t. Γ and A in the corresponding model.

3.2 Gossip-based Models

In a gossip-based model, single peer-to-peer interactions are used to update the
opinion of a single user at each time-step. In general, a strategy in the proposed
framework identifies a collection of subsets of interactions in Γi. In particular,
the strategy ρgossip maps a G-configuration to the collection of singletons made
from the influences in Γi:

ρgossip(Γ ) = {{x} | x ∈ Γi}.

This means that, at each time-step, the opinion value of agent v can be updated
w.r.t. the opinion value of agent u for each singleton {⟨(u, v) : iuv⟩} computed
by the strategy ρgossip(Γ ).

The update function µgossip is defined for any u ∈ V andA = {⟨(v, u) : ivu⟩} ∈
ρgossip(Γ ) as:

µgossip(Γ,A, u) = ou + (ov − ou) · ivu.

Each singleton A ∈ ρgossip(Γ ) determines an atomic relation that updates
exactly one agent’s opinion in the given configuration. Recall, from Section 3.1,
that each pair in the atomic set relation →A has the form:

⟨u : ou⟩ →A ⟨u : µgossip(Γ,A, u)⟩ .

Hence, in this model, the opinion of an agent u is updated by identifying an
edge from an agent v (it may be u itself if it has a self-loop) with influence ivu
over u and by adding to its current opinion ou the weighted difference of opinion
(ov − ou) · ivu of v over u.

A gossip-based model is identified as a binary set relation on G-configurations
in terms of the asynchronous closure of →A, for each singleton A ∈ ρgossip(Γ ).

Definition 5. The →gossip set relation is defined as the set of pairs ⟨Γ ;Γ ′⟩ of
G-configurations such that:

Γ →gossip Γ
′ iff (∃A ∈ ρgossip(Γ )) Γ

□→A Γ ′.
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From the viewpoint of concurrency, the gossip-based opinion dynamic model
captured by →gossip is non-deterministic in the sense that at each state (i.e.,
G-configuration) exactly |Γi| transitions are possible, one per edge in E.

3.3 De Groot Model

In the De Groot model, the opinion value of every agent in the network is updated
at each time-step. All influences are considered at the same time.

The strategy for De Groot in the proposed framework identifies the whole
set of interactions in the network, i.e., Γi. In particular, the strategy ρDeGroot
maps a G-configuration to the singleton whose only element is Γi:

ρDeGroot(Γ ) = {Γi}.

The update function µDeGroot is defined for any u ∈ V and A ∈ ρDeGroot(Γ )
(i.e., A = Γi) as:

µDeGroot(Γ,A, u) = ou +
∑

⟨(v,u):ivu⟩∈A

(ov − ou) ·
ivu∑

⟨(x,u):ixu⟩∈A ixu
,

where the summation in the denominator is assumed to be non-zero. Otherwise,
the value of this function is assumed to be ou (i.e., the opinion of agent u does
not change).

The De Groot model is identified as a binary set relation on G-configurations
in terms of the synchronous closure of →Γi

under the maximal redices strategy
for s = Γi.

Definition 6. The →DeGroot set relation is defined as the set of pairs ⟨Γ ;Γ ′⟩
of G-configurations such that:

Γ →DeGroot Γ
′ iff Γ

Γi→Γi
Γ ′.

From the viewpoint of concurrency, the De Groot opinion dynamic model
captured by →DeGroot is deterministic in the sense that, at each state, there is
exactly only one possible transition where all influences are taken into account
to update each agent’s opinion without interleaving.

3.4 The Hybrid Model

The hybrid model considers every possible influence scenario in the network,
i.e., any possible combination of influences are used to update the opinion of
agents that may be affected by them at each time-step. Therefore, the strategy
in the proposed framework identifies all nonempty subsets of interactions in Γi.
In particular, the strategy ρhybrid maps a G-configuration to the collection of
nonempty subsets made from the influences in Γi:

ρhybrid(Γ ) = {A | A ⊆ Γi and A ̸= ∅}.
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This means that, at each time-step, the opinion value of an agent v can be
updated with a subset of its influencers.

The update function µhybrid is the same as function ρDeGroot. That is, it is
defined for any u ∈ V and A ∈ ρhybrid(Γ ) as:

µhybrid(Γ,A, u) = ou +
∑

⟨(v,u):ivu⟩∈A

(ov − ou) ·
ivu∑

⟨(x,u):ixu⟩∈A ixu
,

where the summation in the denominator is assumed to be non-zero. Otherwise,
the value of this function is assumed to be ou (i.e., the opinion of agent u does
not change). Each subset A ∈ ρhybrid(Γ ) determines an atomic relation that may
update more that one agent’s opinion. Hence, in this model, the opinion of an
agent is updated by identifying some edges that may have influence over it.

The hybrid model is identified as a binary set relation on G-configurations
in terms of the synchronous closure of →A, for each subset A ∈ ρhybrid(Γ ).

Definition 7. The →hybrid set relation is defined as the set of pairs ⟨Γ ;Γ ′⟩ of
G-configurations such that:

Γ →hybrid Γ
′ iff (∃A ∈ ρhybrid(Γ )) Γ

A→A Γ ′.

From the viewpoint of concurrency, the hybrid opinion dynamic model has
the maximum degree of non-determinism possible. Moreover, this model is more
general than the De Groot model.

Theorem 1. →DeGroot ⊆ →hybrid.

Proof. It follows by noting that Γi ∈ ρhybrid(Γ ) and, for each vertex u ∈ V , the
equality µDeGroot(Γ, Γi, u) = µhybrid(Γ, Γi, u) holds.

It is not necessarily the case that →gossip ⊆ →hybrid. This is because the
update functions do not always agree when the collection of selected influ-
ences A is a singleton. In particular, for each singleton A = {⟨(v, u) : ivu⟩},
µhybrid(Γ,A, u) = ov, meaning that agent u in the hybrid model behaves always
like a puppet when u ̸= v. Note that this is not (necessarily) the case in →gossip.
Nevertheless, there is a class of graphs for which this inclusion holds.

Theorem 2. If G is such that each vertex has a self-loop and is influenced at
most by another vertex, and the summation of its incoming influences is 1, then
→gossip ⊆ →hybrid.

Proof. If Γ →gossip Γ
′, there is a singleton A ∈ ρgossip(Γ ) such that Γ □→A Γ ′.

Let A = {⟨(v, u) : ivu⟩}. If u has exactly one incoming edge, then v = u (by
the initial assumption) and ρgossip(Γ,A, u) = ou = ρhybrid(Γ,A, u). Since A ∈
ρhybrid(Γ ), it follows that Γ →hybrid Γ ′. If u has two edges, and the self-loop
is taken, the case v = u is as above. Otherwise, if u ̸= v, the same transition
is obtained in the hybrid model by taking A′ ∈ ρhybrid(Γ ) where A′ = A ∪
{⟨(u, u) : 1− ivu⟩} (an noticing that the denominator in µhybrid becomes 1).
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4 The Framework in Rewriting Logic

This section presents a rewrite theory that implements the set relations frame-
work in Section 2. Off-the-shelf definitions are provided to instantiate the frame-
work with opinion dynamic models, such as the ones introduced in Section 3. This
section assumes familiarity with rewriting logic [21] and Maude [7]; Section 4.1
presents some preliminaries on these two subjects. The full Maude specification
supporting the set relations framework is available at [23].

4.1 Overview of Rewriting Logic and Maude

A rewrite theory [21] is a tuple R = (Σ,E,L,R) such that: (Σ,E) is an equa-
tional theory where Σ is a signature that declares sorts, subsorts, and function
symbols; E is a set of (conditional) equations of the form t = t′ if ψ, where t
and t′ are terms of the same sort, and ψ is a conjunction of equations; L is a
set of labels; and R is a set of labeled (conditional) rewrite rules of the form
l : q −→ r if ψ, where l ∈ L is a label, q and r are terms of the same sort, and
ψ is a conjunction of equations. Condition ψ in equations and rewrite rules can
be more general than conjunction of equations, but this extra expressiveness is
not needed in this paper.

The expression TΣ,s denotes the set of ground terms of sort s and TΣ(X)s
denotes the set of terms of sort s over a set of sorted variables X. The expressions
TΣ(X) and TΣ denote all terms and ground terms, respectively. A substitution
σ : X → TΣ(X) maps each variable to a term of the same sort and tσ denotes
the term obtained by simultaneously replacing each variable x in a term t with
σ(x).

A one-step rewrite t −→R t′ holds if there is a rule l : q −→ r if ψ, a subterm
u of t, and a substitution σ such that u = qσ (modulo equations), t′ is the term
obtained from t by replacing u with rσ, and vσ = v′σ holds in (Σ,E) for each
v = v′ in ψ. The reflexive-transitive closure of −→R is denoted as −→∗

R.
Maude [7] is a language and tool supporting the specification and analysis

of rewrite theories. A Maude module (mod M is ... endm) specifies a rewrite
theory R. Sorts and subsort relations are declared by the keywords sort and
subsort; function symbols, or operators, are introduced with the op keyword:
op f : s1 ... sn -> s, where s1, . . . , sn are the sorts of its arguments, and s
is its (value) sort. Operators can have user-definable syntax, with underbars ‘_’
marking each of the argument positions (e.g., _+_). Some operators can have
equational attributes, such as assoc, comm, and id: t, stating that the operator
is, respectively, associative, commutative, and/or has identity element t. Equa-
tions are specified with the syntax eq t = t′ or ceq t = t′ if ψ; and rewrite rules
as rl [l] : u => v or crl [l] : u => t′ if ψ. The mathematical variables in
such statements are declared with the keywords var and vars.

Maude provides a large set of analysis methods, including computing the
canonical form of a term t (command red t), simulation by rewriting (rew t),
reachability analysis (search t =>* t′ such that ψ), and rewriting according to
a given rewrite strategy (srew t using str). Basic rewrite strategies include r[σ]
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(apply rule with label r once with the optional ground substitution σ), idle
(identity), fail (empty set), and match P s.t. C, which checks whether the
current term matches the pattern P subject to the constraint C. Compound
strategies can be defined using concatenation (α ; β), disjunction (α |β), iteration
(α ∗), α or-else β (execute β if α fails), among other options.

The Unified Maude model-checking tool [26] (umaudemc) enables the use of
different model checkers to analyze Maude specifications. Besides being an inter-
face for the standard LTL model checker of Maude, it also offers the possibility
of interfacing external CTL and probabilistic model checkers. For the purpose
of this paper, the command scheck [27] is used to assign probabilities to the
transition system generated by an initial term t and to perform statistical model
checking to estimate quantitive expressions written in the Quantitative Temporal
Expressions (QuaTEx) language [1]. QuaTEx supports parameterized recursive
temporal operator definitions using primitive non-temporal operators (e.g., con-
ditional statements, values from the current state of the system, etc) and the
next temporal operator (notation #). The QuaTEx query eval E[expr] returns
the expected value of the expression expr using the Monte Carlo method.

Meta-programming. Maude supports meta-programming, where a Maude module
M (resp., a term t) can be (meta-)represented as a Maude term M of sort Module
(resp., as a Maude term t of sort Term) in Maude’s META-LEVEL module. Maude
provides built-in functions such as metaRewrite and metaSearch, which are
the “meta-level” functions corresponding to “user-level” commands to perform
rewriting and search, respectively.

4.2 Influences, Opinions, and State

An agent a and its opinion oa, and the influence of agent a over agent b with
weight iab, are specified in R with the help of the following sorts and function
symbols:

sorts Agent Opinion Edge .
op <_:_> : Agent Float -> Opinion [ctor] .
op <‘(_,_‘):_> : Agent Agent Float -> Edge [ctor] .

The user is expected to provide appropriate constructors for the sort Agent, e.g.,
by extending R with the subsort relation subsort Nat < Agent to use natural
numbers as identifiers for agents.

Sets of agents, opinions, and edges (sorts SetAgent, SetOpinion, and SetEdge
respectively) are defined as “,”-separated sets of elements in the usual way. A
G-configuration Γ = Γo ∪ Γi is represented by a term of sort Network, defining
the set of agents’ opinions (Γo) and influences (Γi) with the following sort and
function symbol:

sort Network .
op < nodes:_ ; edges:_ > : SetOpinion SetEdge -> Network [ctor] .

Analyzing opinion dynamics usually requires determining the number of in-
teractions between agents and the time needed to reach a given state. A term
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of the form “N in step: t comm: nc” of sort State represents the state of a
network N at time instant t, where a number of interactions/communications
nc have taken place:

sort State .
op _in step:_ comm:_ : Network Nat Nat -> State [ctor] .

4.3 Strategies and the Atomic Relation

The framework is parametric on a strategy ρ and an update function µ, as
explained in Section 3. The atomic relation →A is parametric on a nonempty
subset A ⊆ Γi. A strategy identifies each one of such subsets at each time-step.
A SetSetEdge is a “;”-separated set of sets of edges.

sort SetSetEdge . subsort NeSetEdge < SetSetEdge .
op mt : -> SetSetEdge [ctor] .
op _;_ : SetSetEdge SetSetEdge -> SetSetEdge [ctor assoc comm id: mt] .

Some distinguished SetSetEdges include the singleton with all the edges in
the network (De Groot model), the set containing only singletons (Gossip model)
and the set of nonempty subsets of edges (Hybrid model).

var SE : SetEdge . var E : Edge .
op deGroot : SetEdge -> SetSetEdge .
eq deGroot(SE) = SE .

op gossip : SetEdge -> SetSetEdge .
eq gossip(empty) = mt .
eq gossip((E, SE)) = E ; gossip(SE) .

op hybrid : SetEdge -> SetSetEdge .
eq hybrid(SE) = power-set(SE) \ empty .

op strategy : -> SetSetEdge . --- user defined strategy

The operator strategy must be defined by the user to identify the subsets
A ⊆ Γi available in each transition. This can be done, e.g., by adding the equation

eq strategy = gossip(edges) .

where edges is the set of edges in the network currently being modeled.
The atomic relation (pattern (A-Rel)) is defined as a non-executable rewrite

rule and the set relation framework is implemented using the meta-programming
facilities in Maude. In particular, the atomic rewrite relation updates the BELIEF
of a given AGENT (u in pattern (A-Rel)) to a new BELIEF’ when a set of EDGES
(A) is selected and the current state of the system is STATE (Γ ):

var AGENT : Agent . vars BELIEF BELIEF’ : Float . var STATE : State .
vars SETEDGE EDGES : SetEdge .

op update : State SetEdge Agent -> Float . --- user defined µ

crl [atomic] : < AGENT : BELIEF > => < AGENT : BELIEF’ >
if BELIEF’ := update(STATE, SETEDGE, AGENT) [nonexec] .
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The function update (µ in pattern (A-Rel)) must be specified by the user.
The framework provides instances of this function for the models presented in
Section 3.

An asynchronous, parallel, or synchronous rewrite step, depending on the
underlying strategy, is captured by the rewrite rule step below:

var SETNODE : SetNode . vars STEPS COMM : Nat .
op moduleName : -> Qid . --- Name of the module with the user’s network

crl [step] : STATE => STATE’
if EDGES ; SSE := strategy /\

STATE’ := step([moduleName], STATE, EDGES) .

In this rule, the current STATE is updated to STATE’ by non-deterministically
selecting a set of EDGES from the set of set of edges available according to the
strategy. The function step below takes as parameters the meta-representation
of the user’s module defining the network ([moduleName]), the current state, and
the selected set of edges.

var SETAG : SetAgent . var SETOP : SetOpinion . var OP : Opinion .

op step : Module State SetAgent SetOpinion SetEdge -> State .
op step : Module State SetEdge -> State .

eq step(M, STATE, EDGES) =
step(M, STATE, incidents(EDGES), empty, EDGES) .

eq step(M, STATE, empty, SETOP, EDGES) =
< nodes: (nodes(STATE) / SETOP) ; edges: edges(STATE) >
in step: (steps(STATE) + 1) comm: (comm(STATE) + | non-self(EDGES) |) .

eq step(M, STATE, (AGENT, SETAG), SETOP, EDGES) =
step(M, STATE, SETAG, (SETOP, next(M, AGENT, EDGES, STATE)), EDGES) .

The function step recursively computes the beliefs of the agents incident to
EDGES. The updated beliefs are accumulated in the set of opinions SETOP. The
opinions of the other agents remain as in STATE (operator /), and the number of
steps and the number of communications are updated accordingly. The expres-
sion | non-self(.) | returns the number of edges that are not self-loops and
nodes(.) returns the opinions (Γo) in a state.

The function next computes the outcome of the transition ⟨u : ou⟩ →A

⟨u : o′u⟩ by applying (metaApply) the rule atomic with the needed substitutions
to make this rule executable (and deterministic). Namely, it fixes the opinion to
be updated (AGENT and BELIEF), the current STATE, and the set of EDGES to be
considered during the update.

op next : Module Agent SetEdge State -> Opinion .
ceq next(M, AGENT, EDGES, STATE) = OP
if SUBS := ’AGENT:Agent <- upTerm(AGENT) ;

’BELIEF:Float <- upTerm(opinion(AGENT, STATE)) ;
’STATE:State <- upTerm(STATE) ;
’EDGES:SetEdge <- upTerm(EDGES) /\

RES? := metaApply(M, upTerm(< AGENT : opinion(AGENT, STATE) >),
’atomic, SUBS, 0) /\

OP := if RES? == failure then error
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else downTerm(getTerm(RES?), error) fi .

The opinion function returns the opinion of an agent in a given state.

5 Experimentation

This section shows how Maude and some of its tools can be used to analyze
instantiated versions of the rewrite theory R (see Section 4) to better understand
the evolution of opinions in networks of agents. Of special interest is checking
the (im)possibility of reaching a consensus (i.e., agent’s opinions converge to a
given value) or stability of the systems, computing the number of steps to reach
consensus, computing an optimal strategy to reach consensus, measuring the
polarization of the system at each time-step, among others. It is noticed that
for De Groot and gossip-like models, there are theoretical results identifying
topological conditions that guarantee consensus. In particular, in these models,
the agents reach consensus if the graph is strongly connected and aperiodic (i.e.,
the greatest common divisor of the lengths of its cycles is one) [14].

5.1 Finding Consensus

Let Example-DG be the module/theory extending R with the following operators
and equations:

op init : -> Network . --- Initial state (as in Fig 1)
eq init = < nodes: ... ; edges: ... > in step: 0 comm: 0 .
eq moduleName = ’Example-DG . --- Name of the theory

--- Predefined µ for De Groot
eq update(STATE, SETEDGE, AGENT) = deGrootUpdate(STATE, SETEDGE, AGENT) .
eq strategy = deGroot(edges(init)) . --- De Groot strategy

The following command answers the question of whether it is possible to
reach a consensus from the initial state. Function consensus(.) checks if all
opinions oi and oj in a given state satisfy |oi−oj | < ϵ, where ϵ is an error bound.

Maude> search [1] init =>* STATE such that consensus(STATE) .

Solution 1 (state 34)
STATE --> < nodes: < 0 : 4.80e-1 >, < 1 : 4.79e-1 >, < 2 : 4.79e-1 >, ...

edges: <(0,1): 5.99e-1 >, <(0,2): 4.00e-1 >, ... >
in step: 34 comm: 272

The consensus about the given proposition is approximately 0.48 and it is
reached in 34 steps. Since in the De Groot model all the 12 edges are considered in
each interaction, there is a total of 272 = 34×8 communications (the interactions
on the self-loops are not considered in that counting). Note that an application
of rule step in this case is completely deterministic (the strategy considers only
one possible outcome, including all the edges of the network).

Let Example-H be as Example-DG, but considering the strategy and update
functions for the hybrid model. As explained in Section 3.4, the hybrid model
exhibits the maximum degree of non-determinism. Using search to check the
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existence of a reachable state satisfying consensus for the system in Figure 1 (12
edges) becomes unfeasible: a state may have up to 4095 (nonempty subsets of
Γi) successor states. Certainly, for this network, a solution must exist due to the
above output of the search command and the fact that →DeGroot ⊆ →hybrid.

Consider the following rewrite rule and expression in the Maude’s strategy
language:

crl [step’] : STATE => STATE’
if STATE’ := step([moduleName], STATE, EDGES) [nonexec] .

var STR : SetSetEdge .
strat round : SetSetEdge @ State .
sd round(EDGES ; STR) := (match STATE s.t. consensus(STATE))

or-else step’[EDGES <- EDGES] ; round(STR) .

Unlike step, rule step’ does not use the model strategy to select the set of EDGES
that will be used to compute the next state (and hence, it is non-executable).
The Maude’s strategy round checks whether the current state satisfies consen-
sus and stops. Otherwise, it non-deterministically chooses a set EDGES, applies
the rule step’ instantiating the set of edges with that particular set, and it is
recursively called without EDGES. In other words, round starts with a set of pos-
sible interactions and it allows for these interactions to happen only once. This
is certainly one of the possible behaviors that can be observed with the hybrid
model. Using this strategy, the solutions found by the commands below posi-
tively answer the following question for the model in Figure 1: Can consensus
be reached by making some groups of agents (non necessarily disjoint) interact
only once? The expression filter>=(n,STR) below returns the sets in STR with
cardinality at least n.

Maude> dsrew [1] init using round(hybrid(edges)) .
Solution 1
result State: < nodes: < 0 : 0.0 >, ... edges: ... > in step: 8 comm: 13 .

Maude> dsrew [1] init using round(filter>=(6, hybrid(edges))) .
Solution 1
result State: < nodes: < 0 : 1.50e-1 >, ... > in step: 21 comm: 88 .

As expected, because of the non-deterministic nature of the hybrid model,
the value of consensus (and the number of steps to reach such a state) can heavily
depend on the choice of edges at each step. In the first output returned by dsrew
in the first command, all the sets considered by round included edges where a
acts as an influencer and the edge f −→ a is never selected. This explains the
value of the consensus, where the opinion of a was propagated to her neighbors.
In the send command, larger groups are chosen to interact, and the edge f −→ a is
selected in 4 out of the 21 interactions. Hence, a eventually changes her opinion.

5.2 Statistical Analysis

An alternative approach to deal with the inherent state space explosion problem
when analyzing R is to perform statistical model checking. In the following, the
tool umaudemc [26] is used for such a purpose. The umaudemc command scheck
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enables Monte-Carlo simulations of a rewrite theory extended with probabilities;
it estimates the value of a quantitative temporal expression written in the query
language QuaTEx [1].

Consider the following QuaTEx expression that computes the probability of
reaching a consensus before N communications:

Prob(N) = if (s.rval("consensus(S)")) then 1.0 else
if (s.rval("comm(S)") <= N) then # Prob(N) else 0.0 fi fi;

The two commands below estimate the probability (output of the tool µ =
val) of reaching consensus before 30 (expression E[Prob(30)]) and 20 commu-
nications, respectively, in the running example when the gossip-based model is
considered. The confidence level of these analyses is 95% and the same proba-
bility is assigned to every successor state (–assign uniform).

umaudemc scheck ex-gossip init formula -a 0.05 -d 0.01 --assign uniform
(µ = 0.587)

umaudemc scheck ex-gossip init formula -a 0.05 -d 0.01 --assign uniform
(µ = 0.348)

As expected, reducing the maximum number of communications decreases the
changes of reaching a consensus state.

The authors in [5] hypothesize that the less dispersed opinion becomes, the
easier it will be to reach consensus. In fact, the variance (a standard measure
of dispersion) is used as a measure of opinion polarization in social networks
[5]. The following commands aim at testing such a hypothesis in the running
example when considering the hybrid model:

umaudemc scheck example-H init ... --assign uniform
(µ = 0.901)

umaudemc scheck example-H init ... --assign "term(variance(L,R))"
(µ = 1.0)

umaudemc scheck example-H init ... --assign "term(distance(L,R))"
(µ = 0.987)

These commands estimate the probability of reaching consensus before 300
communications (E[Prob(300)]). In the first case, all the successor states are
assigned the same probability. In the second, successor states whose set of cho-
sen agents has higher variance are assigned higher probabilities. In the third
command, successor states whose set of chosen agents are more polarized, in the
sense that the distance between the maximal and the minimal opinions is big-
ger, are assigned higher probabilities. These results confirm the hypothesis that
it is more likely (1.0 vs 0.9) to reach consensus sooner when communications of
agents with more distant opinions is encouraged to reduce dispersion of opinions.
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6 Concluding Remarks

This paper presented a unified framework for dynamic opinion models. Such
models are tools to analyze the evolution of opinion values, about a given topic,
in a network of agents whose opinion may be influenced by other agents. Set
relations, which are used for specifying and analyzing concurrent behavior in
collections of agents, are the formalism used to unify the modeling of these
systems. This framework relies on two mechanisms, namely, an atomic relation
that updates the opinion of single agents based on a collection of interactions
and a strategy defining the collections of interactions to be considered. The
framework is formally specified as a rewrite theory, which is expected to be
instantiated for the opinion dynamic model of interest. Three different dynamic
opinion models (De Groot, goossip-like, and hybrid) are shown to be instances
of this framework. Experiments on these models show that statistical model
checking is a promising alternative to tackle the state space explosion problem
when analyzing models with a high degree of non-determinism, such is the case
of the hybrid model. To the best of the authors’ knowledge, this is the first
documented effort to make available concurrency theory, techniques, and tools
for the specification and analysis of opinion dynamics models and properties
such as polarization and consensus.

The ultimate goal of making available computational ideas and approaches
for analyzing phenomena in social networks requires (significant) additional
work. First, a more in-depth exploration of properties related to these phenom-
ena in social networks is required. This may lead to the proposal of new temporal
and probabilistic properties that cannot be handled with current techniques and
approaches supporting the opinion dynamic modeling community, but that may
be highly supported by the developments in concurrency and computational
logics. Second, extensions to the current framework in terms of more general
dynamic networks (i.e., the value of influences can change), temporal networks
(i.e., nodes and edges can appear and disappear), and the inclusion of several
topics/propositions that may share causal relations are in order. Third, more
experimental validation is required, ideally with data gathered from real social
networks. Fourth, building on the abstract relations proposed here, techniques
from concurrency theory become available for the analysis of social systems. It is
worth exploring standard concurrency techniques such as bisimulation and test-
ing equivalences to answer questions such as whether two social systems ought
to be equivalent and whether there is a social context, represented as a social
system, that can tell the difference between two other social systems.
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Abstract. We propose a new deductive model checking methodology
where narrowing-based logical model checking of symbolic states spec-
ified as disjunctions of constrained patterns is synergistically combined
with inductive theorem proving to discharge inductive verification con-
ditions. An obvious synergy is to use an inductive theorem prover in
automated mode as an oracle to help logical model checking reach a fix-
point. But this is not the only possible synergy. In this paper we focus
instead on a new deductive model checking methodology to verify invari-
ants —including inductive invariants— of infinite-state systems, where
logical model checking automates large parts of the verification effort
with the help of an inductive theorem prover as an oracle, and the re-
maining tasks are left to the inductive theorem prover used in interactive
mode. We demostrate this methodology by means of Maude examples
using two tools working in tandem: the DM-Check symbolic model
checker, and the NuITP inductive theorem prover.

1 Introduction

Amir Pnueli gave a fascinating invited talk entitled “Deduction is Forever” at
FM’99 [24]. One of his main points was that, although explicit-state model
checking was by then widely adopted in circuit design, deductive verification
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was essential for scalability; and a judicious combination of model checking and
theorem proving was needed. This paper is all about synergistically combining
logical model checking and inductive theorem proving into what we call deduc-
tive model checking: a combination where both formal methods cooperate so
intimately that their differences almost evaporate. The key link relating both
formal methods is narrowing, an automated deduction technique originating in
resolution-based theorem proving [27]. Although originally introduced as an ef-
ficient paramodulation method to symbolically reason about equality, narrowing
was later generalized in [16] as a formal method, not just in equational logic, but
in rewriting logic [17], to symbolically perform reachability analysis of concurrent
systems, i.e., as a logical model checking method to verify infinite-state systems.
These narrowing-based logical model checking techniques have been further ad-
vanced by (see [11, 1, 9]): (i) symbolic state space reduction techniques; (ii) an
extension from reachability analysis to LTL model checking; (iii) special tech-
niques for cryptographic protocol verification; and (iv) symbolic model checkers.
Maude itself also supports narrowing-based infinite-state model checking [7].
However, in all the just-mentioned work the system specifications (rewrite the-
ories) that can be model checked, and the state predicates that can be used
to specify properties are quite restricted: only unconditional rewrite theories
R “ pΣ,EYB,Rq whose equations EYB have the finite variant property (FVP)
[12] can be model checked; and the only state predicates allowed are construc-
tor terms upx1, . . . , xnq, called constructor patterns, denoting the set of concrete
states obtained from upx1, . . . , xnq by instantiating the variables x1, . . . , xn by
ground terms.

The situation has significantly changed for the better thanks to [20]: (i) the
rewrite theories that can be analyzed can have conditional rules and have virtu-
ally no restrictions; (ii) the state predicates are now generalized to constrained
constructor patterns of the form upx1, . . . , xnq | φ, with φ a quantifier-free for-
mula, describing the instances of upx1, . . . , xnq that satisfy φ; furthermore, any
finite unions and/or intersections of such sets can always be described by a finite
disjunction of constrained constructor patterns, an expressive symbolic language
to specify pre- and post-conditions; (iii) narrowing is generalized to constrained
narrowing, where the sets of states thus narrowed by the possibly conditional
rules R of the rewrite theory R “ pΣ,E Y B,Rq specifying the system’s tran-
sition relation are specified as disjunctions of constrained patterns; and (iv)
constrained narrowing computes the predicate transformer Rp_q (see [20]) that
maps a disjunction A of constrained patterns to a resulting such disjunction
RpAq denoting the states reachable from A in one R-transition step.

This greater generality and expressiveness brings with it a natural marriage
between logical model checking and inductive theorem proving, which is needed
for state space reduction by folding. The set of states R-reachable from a disjunc-
tion A of constrained constructor patterns is structured as a (usually infinite)
narrowing forest built in a breadth first manner. Folding tries to transform this
infinite forest into a finite graph (a fixpoint) by subsuming (and therefore delet-
ing) a new symbolic state u | φ generated at depth k ` 1 as a substitution
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instance of a previously generated symbolic state at depth j ď k`1. For uncon-
strained patterns u and v, a B-matching algorithm (for B the structural axioms
in R “ pΣ,EYB,Rq) is used. For a constrained constructor pattern u | φ, check-
ing whether it is subsumed by a previouly generared one v | ψ generally requires
inductive theorem proving (see §2). In the deductive model checking approach
that we propose, symbolic model checking and inductive theorem proving work
together in two modes: (a) an automatic one, where a terminating strategy σ of
a theorem prover is used as an oracle to check whether a constrained pattern
u | φ can be folded into another one v | ψ; and (b) an interactive mode, in which
verification conditions that could not be automatically checked are handled by
the inductive theorem prover. But inductive theorem proving is not just a sup-
porting actor in the cast, with symbolic model checking as protagonist. Their
synergistic combination opens up new possibilities where the roles are changed.

This is nicely illustrated by the main focus of this paper, namely, the appli-
cation of deductive model checking to the verification of invariants, including
inductive ones. After some preliminaries in §2 we:

1. Present in §3 a proof methodology for verifying invariants where, denoting
as A, B, C, etc., disjunctions of constrained patterns, we show how to prove
by a mixture of automatic and interactive methods that: (i) a set A of initial
constrained terms is contained in a conjectured invariant denoted by the set
B of constrained terms; (ii) B is an inductive, i.e., transition-closed, invari-
ant; (iii) C is an invariant because it contains a verified invariant B, which
can be proved in two ways: (iii).1 positively, by proving such containment,
and (iii).2 negatively, by showing that the states in the complement of C
have no states in common with those denoted by B.

2. In §4 we explain and illustrate with an example how the invariant proof
methodology presented in §3 is supported by the prototype constrained nar-
rowing model checker DM-Check, publicly available4, working in tandem
with Maude’s prototype NuITP inductive theorem prover [6].

3. In §5 a case study on the Alternating Bit Protocol (ABP) is presented.
4. In §6 we discuss related work and in §7 we present some conclusions.

2 Preliminaries

We assume familiarity with the notions of an order-sorted signature Σ on a
poset of sorts pS,ďq, an order-sorted Σ-algebra A, and the term Σ-algebras TΣ

and TΣpXq for X an S-sorted set of variables. We also assume familiarity with
the notions of: (i) Σ-homomorphism h : A Ñ B between Σ-algebras A and B,
so that Σ-algebras and Σ-homomorphisms form a category OSAlgΣ ; (ii) order-
sorted (i.e., sort-preserving) substitution θ, its domain dompθq and range ranpθq,
and its application tθ to a term t; (iii) preregular order-sorted signature Σ, i.e.,
a signature such that each term t has a least sort, denoted lsptq; (iv) the set
pS “ S{pě Y ďq` of connected components of a poset pS,ďq viewed as a DAG;
4 At http://safe-tools.dsic.upv.es/dmc
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(v) for A a Σ-algebra, the set As of its elements of sort s P S; (vi) the order-
sorted equational deduction relation E $ u “ v and its associated E-equality
relation “E ; (vi) E-unifiers of an equation u “ v, i.e., substitutions θ such that
uθ “E vθ; and (vii) the satisfaction relation A |ù φ of a first-order Σ-formula φ
by a Σ-algebra A. We furthermore assume that all signatures Σ have non-empty
sorts, i.e., TΣ,s “ H for each s P S. rA Ñ Bs denotes the S-sorted functions
from A to B. These notions are explained in detail in [18, 14, 19]. The material
below is adapted from [19, 20].

Convergent Theories and Sufficient Completeness. Given an order-sorted
equational theory E “ pΣ,EYBq, where B is a collection of associativity and/or
commutativity and/or identity axioms and Σ is B-preregular, we can associate
to it a corresponding rewrite theory [17] E⃗ “ pΣ,B, E⃗q by orienting the equations
E as left-to right rewrite rules. That is, each pu “ vq P E is transformed into
a rewrite rule u Ñ v. For simplicity we recall here the case of unconditional
equations. Since in this work we will consider conditional theories E⃗ , we refer
to [15] for full details on the general definition of convergent theory. The main
purpose of the rewrite theory E⃗ is to reduce the complex bidirectional reasoning
with equations to the much simpler unidirectional reasoning with rules under
suitable assumptions. We assume familiarity with the notion of subterm t|p of
t at a term position p and of term replacement trwsp of t|p by w at position
p (see, e.g., [5]). The rewrite relation t ÑE⃗,B t1 holds iff there is a subterm
t|p of t, a rule pu Ñ vq P E⃗ and a substitution θ such that uθ “B t|p, and
t1 “ trvθsp. We denote by Ñ˚

E⃗,B
the reflexive-transitive closure of ÑE⃗,B . For

E⃗ unconditional, the convergence requirements are as follows (see [15] for E⃗
conditional): (i) varspvq Ď varspuq; (ii) sort-decreasingness: for each substitution
θ, lspuθq ě lspvθq; (iii) strict B-coherence: if t1 ÑE⃗,B t11 and t1 “B t2 then
there exists t2 ÑE⃗,B t12 with t11 “B t12; (iv) confluence (resp. ground confluence)
modulo B: for each term t (resp. ground term t) if tÑ˚

E⃗,B
v1 and tÑ˚

E⃗,B
v2, then

there exist rewrite sequences v1 Ñ
˚

E⃗,B
w1 and v2 Ñ

˚

E⃗,B
w2 such that w1 “B w2;

(v) termination: the relationÑE⃗,B is well-founded (for E⃗ conditional, we require
operational termination [15]). If E⃗ satisfies conditions (i)–(v) (resp. the same, but
(iv) weakened to ground confluence modulo B), then it is called convergent (resp.
ground convergent). The key point is that then, given a term (resp. ground term)
t, all terminating rewrite sequences tÑ˚

E⃗,B
w end in a term w, denoted t!E⃗ , that

is unique up to B-equality, and its called t’s canonical form. Ground convergence
implies three major results: (1) for any ground terms t, t1 we have t “EYB t1 iff
t!E⃗ “B t1!E⃗ , (2) the B-equivalence classes of canonical forms are the elements of
the canonical term algebra CΣ{E,B , where for each f : s1 . . . sn Ñ s in Σ and B-
equivalence classes of canonical terms rt1s, . . . , rtns with lsptiq ď si the operation
fCΣ{E,B

is defined by the identity: fCΣ{E,B
prt1s . . . rtnsq “ rfpt1 . . . tnq!E⃗ s, and (3)

we have an isomorphism TE – CΣ{E,B .
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A ground convergent rewrite theory E⃗ “ pΣ,B, E⃗q is called sufficiently com-
plete with respect to a subsignature Ω, whose operators are then called construc-
tors, iff for each ground Σ-term t, t!E⃗ P TΩ . Furthermore, for E⃗ “ pΣ,B, E⃗q suffi-
ciently complete w.r.t. Ω, a ground convergent rewrite subtheory pΩ,BΩ , E⃗Ωq Ď

pΣ,B, E⃗q is called a constructor subspecification iff TE |Ω – TΩ{EΩYBΩ
. If EΩ “

H, then Ω is called a signature of free constructors modulo axioms BΩ . Note
that E⃗ “ pΣ,B, E⃗q is sufficiently complete with respect to Ω iff each ground
Σ-term t P TΣzTΩ is E⃗, B-reducible, i.e., tÑE⃗,B t1 holds for some t1 P TΣ .

Specifying Sets of States with Constrained Constructor Patterns. We
summarize here the main ideas and results in [20] on constrained constructor
patterns. Let pΣ,E Y Bq be an equational theory having a ground convergent
decomposition pΣ,B, E⃗q, a constructor subtheory pΩ,BΩ ,Hq Ď pΣ,B, E⃗q, and
a sort State at the top of one of its connected components whose data elements
denote states of a rewrite theory having pΣ,B, E⃗q as its equational subtheory.
Constrained constructor patterns are an expressive language to specify sets of
states in the data type TΩ{BΩ

of constructors of pΣ,B, E⃗q. The language defines
a distributive lattice (see [20]) generated by constrained constructor patterns
of the form u | φ, where u P TΩ,StatepXq, with Xs countable for each sort s
in Σ, and φ a conjunction of Σ-equalities. The language is then the closure of
such patterns under the _ and ^ lattice operations. We shall use capital letters
A,B,C, . . . to describe expressions in such a distributive lattice. The semantics
of any such u | φ is the set of states:

Ju | φK “ trvs P TΩ{BΩ ,State | Dρ P rX Ñ TΩs s.t. rvs “ ruρs ^ E YB |ù φρu.

Such a mapping extends to equivalence classes of expressions A,B,C, . . . and
defines a homomorphism of distributive lattices so that:

JA_BK “ JAKY JBK and JA^BK “ JAKX JBK.

Every expression A has a semantically equivalent expression involving only basic
constrained patterns closed only under _, because of the semantic identities:

Ju | φ^ v | ψK “ Ju | φKX Jv | ψK “
Ť

αPDUnif BΩ
pu“vqJpu | φ^ ψqαK

where DUnif BΩ
pu “ vq denotes a complete set of disjoint5 BΩ-unifiers of the

equation u “ v. Set theoretic inclusion Ju | φK Ď Jv | ψK has an attractive
sufficient condition called BΩ-subsumption and denoted u | φ ĎBΩ

v | ψ, which
by definition holds iff there exists a BΩ-matching substitution α such that: (i)
u “BΩ

pvαq, and (ii) TΣ{EYB |ù φñ pψαq. As illustrated by an example in §3,
subsumption is not a necessary condition for set containment.

The language of constrained patterns is quite expressive, since it provides a
constructive version of set theory when we view Ju | φK as the set tupx1, . . . , xnq P

5 A disjoint E-unifier of u “ v is an E unifier of u1
“ v1, with u1 (resp. v1) a variable

renaming of u (resp. v) such that u1 and v1 share no variables.
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TΩ{BΩ ,State | φpx1, . . . , xnqu. Nothing prevents pΣ,B, E⃗q from specifying various
computable auxiliary functions to make such a language even more expressive.

Logical Model Checking with Constrained Narrowing. Maude provides
narrowing-based model checking of concurrent systems specified as topmost6

rewrite theories R “ pΣ,E YB,Rq [7], but only under quite restrictive require-
ments, namely: (a) its equational subtheory pΣ,E Y Bq must enjoy the finite
variant property (FVP) [12]; and (b) its rules R must be unconditional. This
means that only unconditional patterns are narrowed, i.e., in the above notation
patterns the form u1 | J. This severely limits both the systems and the prop-
erties that can be specified and verified. The situation has drastically changed
after [20] for two reasons: (i) now fully general admissible7 topmost rewrite the-
ories R “ pΣ,E YB,Rq with FVP constructor subtheory pΩ,EΩ YBΩq can be
symbolically model checked; and (ii) the language of state predicates can be the
expressive language of constrained constructor patterns.

Achieving logical, narrowing-based model checking in practice with the full
generality of (i)–(ii) cannot be done using R directly. This is because, given a
rule lÑ r if φ in R, it is safe to assume that l is an Ω-term, but r can often be a
general Σ term, for which E YB-unification is both infinitary and undecidable.
However, the generality of (i)–(ii) can be achieved indirectly by using instead the
semantically equivalent theory RΩ

l,r defined in [20]. Therefore, from now on we
shall assume that R “ pΣ,E Y B,Rq is already of the form RΩ

l,r. Furthermore,
because it affords a simpler exposition and a more efficient implementation we
will further assume that in pΩ,EΩ Y BΩq, EΩ “ H, i.e., the constructors are
free modulo BΩ . Under such assumptions, the initial transition system defined
by R [20] has the form CR “ pCΣ{E⃗,B ,ÑRq, with8 CΣ{E⃗,B |Ω “ TΩ{BΩ

.
For a topmost R satisfying these assumptions constrained narrowing [20] is

a labeled relation between constrained constructor terms u | φ α;R,BΩ
v | ψ that

holds iff there exists a rule l Ñ r if ϕ in R and a disjoint BΩ-unifier α of the
equation u “ l such that v | ψ “ pr | φ ^ ϕqα. Its reflexive transitive closure
u | φ

α;
˚

R,BΩ
v | ψ holds if there is a number k and a sequence u | φ α1;R,BΩ

u1 |

φ1 . . . uk´1 | φk´1
αk;R,BΩ

uk | φk such that α “ α1 . . . αk, and v | ψ “ uk | φk.
For k “ 0 we just have u | φ id;R,BΩ

u | φ, with id the identity substitution. For
technical reasons we assume that the variables of each ui`1 | φi`1 are always
fresh w.r.t. those of any previous uj | φj , 1 ď j ď 0, with u0 | φ0 “def u | φ. The

6 A rewrite theory R is topmost iff it has a sort State such that: (i) if fpt1, . . . , tnq

has sort State, none of the ti, 1 ď i ď n has sort State, and (ii) for any rewrite rule
l Ñ r if φ in R, l and r have sort State. Many common rewrite theories such as,
e.g., actor systems, can be transformed into semantically equivalent topmost ones.

7 R “ pΣ, E YB, Rq is admissible if pΣ, E YBq is ground confluent and the rules R are
ground coherent w.r.t. the oriented equations E⃗ modulo B, i.e., for each t P TΣ,State
if t ÑR,B t1, then there exists a u1 such that t!E⃗,B ÑR,B u1 and t1!E⃗,B “B u1!E⃗,B .

8 Given a Σ-algebra A and a subsignature Σ1 with same poset of sorts, the reduct A|Σ1

is the Σ1-algebra with same sorts as A and same operations as A for each f P Σ1.
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key result in [20] ensuring the completeness of symbolic reachabilty analysis by
constrained narrowing is the following theorem:

Theorem 1. [20] Let R be topmost with equational theory pΣ,E YBq and sat-
isfy the requirements above, and let

Ž

iPI ui | φi and
Ž

jPJ vj | ψj be finite
disjunctions of constrained constructor patterns for pΣ,E YBq. Then, there ex-
ists rws P J

Ž

iPI ui | φiK and rw1s P J
Ž

jPJ vj | ψjK such that rws Ñk
R rw1s iff

there are i P I and j P J , a narrowing sequence ui | φi
α;

k

R,BΩ
v | ψ, a dis-

joint BΩ-unifier β of the equation v “ vj and a ground substitution ρ such that
E YB $ pψ ^ ψjqβρ.

Constrained narrowing is a form of deductive model checking, where symbolic
model checking and inductive theorem proving are synergistically combined, for
three reasons: (1) The existence of a ground substitution ρ such that E Y B $
pψ^ψjqβρ is another way to say that TΣ{EYB |ù Dpψ^ψjqβ, where Dpψ^ψjqβ
denotes the existential closure of pψ ^ ψjqβ; an inductive satisfiability property.
(2) Constrained narrowing search from

Ž

iPI ui | φi to find an intersection with
Ž

jPJ vj | ψj will usually generate an infinite narrowing forest that symbolically
describes the set of all states reachable from J

Ž

iPI ui | φiK. However, if using the
subsumption relation ĎBΩ

we can fold such an infinite narrowing tree into a finite
narrowing graph by BΩ-subsuming if possible any constrained pattern found at
depth k`1 by some other constrained pattern found at depth j ď k, the situation
becomes much better, since only a finite number of intersections with a goal state
Ž

jPJ vj | ψj need to be examined in finite time. But inductive theorem proving
is of the essence for the subsumption relation u | φ ĎBΩ

v | ψ to hold, since for
some matching substitution α we need to prove that TΣ{EYB |ù φ ñ pψαq, an
inductive theorem. (3) Inductive theorem proving does not play second fiddle
to logical model checking: it is an equal partner in system verification, i.e., new
verification methods that combine the powers of logical model checking and
inductive theorem proving and go beyond logical model checking come out of
the merging of both formal methods. This is nicely illustrated by the proof
methodology for verifying invariants proposed in §3 and demonstrated in §4–5.

3 A Proof Methodology for Verifying Invariants

As discussed in §2, without loss of generality we may assume that the admissible
topmost rewrite theory R “ pΣ,EYB,Rq specifying our system of interest, and
having a topmost sort State, is the result of transforming a general topmost
rewrite theory R0 into a semantically equivalent one R “ RΩ

0l,r
such that its

rewrite rules have the form: u Ñ v if ϕ, with u and v terms in a constructor
subsignature Ω Ď Σ, which we assume free modulo the axioms BΩ . An invariant
Q from a set I of initial states is, by definition, a subset Q Ď CΣ{E⃗,B,State
such that: (i) I Ď Q, and (ii) ReachRpIq Ď Q, where ReachRpIq “def trvs P
CΣ{E⃗,B,State | Drus P I s.t. rus Ñ

˚
R rvsu. Such a Q is called an inductive invariant

from I if, in addition, (iii) Q is transition-closed, i.e., if rus P Q and rus ÑR rvs,
then rvs P Q. Note that ReachRpIq is the smallest inductive invariant from I.
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Our invariant verification methodology for such a theory R combines constrained
narrowing and inductive theorem proving to prove invariants as follows:

1. Specification of Initial States and of Invariants. Both the (typically
infinite) set of initial states, as well the set of states of a conjectured invariant
Q (resp. of its complement Qc) are symbolically specified as disjunctions of
constrained constructor patterns of the form:

Ž

iPI ui | φi.

2. Subsuming Initial States by a Conjectured Inductive Invariant.
Ž

jPJ vj | ψj will be a (conjectured) inductive invariant from initial constrained
patterns

Ž

iPI ui | φi if we prove the containment
Ť

iPIJui | φiK Ď
Ť

jPJJvj | ψjK.
Such a containment can be proved in two ways:

2.1. Automatically. Since: (i) the existence for each i P I of a j P J such
that Jui | φiK Ď Jvj | ψjK is a sufficient condition for the above containment,
(ii) the subsumption ui | φi ĎBΩ

vj | ψj , i.e., the existence of a B-matching
substitution α such that ui “B pvjαq and CΣ{E⃗,B |ù φi ñ pψjαq is a sufficient
condition for the containment in (i), and (iii) a fixed, terminating proof strategy
σ may succeed in proving that φi ñ pψjαq is an inductive theorem, we may use
(i), (ii) and σ to automatically prove that, for at least a subset I0 Ď I, we have
Ť

iPI0
Jui | φiK Ď

Ť

jPJJvj | ψjK.

2.2. Deductively. Apart of proving the containment for I0, we can use an
inductive theorem prover to prove the remaining containment

Ť

iPIzI0
Jui | φiK Ď

Ť

jPJJvj | ψjK. Two proof methods are possible: (i) For some i P IzI0 the previous
automatic method may have found a j P J such that ui “B pvjαq but the
automatic proof strategy σ could not prove that CΣ{E⃗,B |ù φi ñ pψjαq; if the
user conjectures that such an implication is valid in CΣ{E⃗,B , then an inductive
theorem prover can be used to prove the containment Jui | φiK Ď Jvj | ψjK.
Method (i) may increase I0 to a superset I1 Ě I0. We can then use the following
Method (ii) to prove the remaining containment

Ť

iPIzI1
Jui | φiK Ď

Ť

jPJJvj | ψjK
as follows: (ii).1 We add to Σ a signature Π containing a new sort Pred of
predicates with a single constant tt of sort Pred and a predicate symbol, say, p :
State Ñ Pred, (ii).2 we characterize the set

Ť

jPJJvj | ψjK by the equations Ep “

tppvjq “ tt if ψjujPJ , and (ii).3 we use an inductive theorem prover to prove the
conjectures tφi ñ ppuiq “ ttuiPIzI1 in the initial algebra CΣYΠ{E⃗YE⃗p,B .

As an example, let the elements of sort State be triples xn,m, ky of natu-
rals in Peano notation, and suppose that we want to prove the containment
Jx0, y1, spz1qy | y1 ą sp0q “ trueK Ď Jxx, spyq, zy | JK. Predicate p is defined by the
equation ppxx, spyq, zyq “ tt. Need to prove y1 ą sp0q “ true ñ ppx0, y1, spz1qyq “

tt. Reasoning by cases y1 “ 0 or y1 “ spy2q gives us subgoals (1) 0 ą sp0q “
true ñ ppx0, 0, spz1qyq “ tt and (2) spy2q ą sp0q “ true ñ ppx0, spy2q, spz1qyq “

tt. The first subgoal (1) is true due to its unsatisfiable condition; the second
subgoal (2) is true because ppx0, spy2q, spz1qyq reduces to tt.

3. Verifying an Inductive Invariant. If we have proved that
Ž

jPJ vj | ψj is
a conjectured inductive invariant from initial constrained patterns

Ž

iPI ui | φi
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by Method 2, then
Ž

jPJ vj | ψj will actually be an inductive invariant from
Ž

iPI ui | φi iff the set
Ť

jPJJvj | ψjK is transition-closed. By Theorem 1 (with
k=1) such a set will be transition-closed iff for each j P J , rule l Ñ r if ϕ in R,
and disjoint BΩ-unifier α P DUnif Bpl “ vjq we have Jpr | ψj ^ϕqαK Ď

Ť

jPJJvj |

ψjK. The method to prove such a containment is entirely similar to Method 2,
except for one additional case: it may happen that for some pr | ψj ^ ϕqα the
constraint pψj^ϕqα is unsatisfiable, so that Jpr | ψj^ϕqαK “ H, but the theorem
proving strategy σ was not able to prove this fact. In such additional case we
use inductive theorem proving to prove that CΣ{E⃗,B |ù ␣pv | ψj ^ ϕqα.

4. Verifying other Invariants Positively. Suppose that we have already
proved that

Ž

jPJ vj | ψj is an inductive invariant from the initial constrained
patterns

Ž

iPI ui | φi, and we wish to prove that the set denoted by
Ž

kPK wk | γk

is an invariant from
Ž

iPI ui | φi. A sufficient condition for this to hold is proving
the containment

Ť

jPJJvj | ψjK Ď
Ť

kPKJwk | γkK. The method to prove this
containment is exactly Method 2. Of course, containment is only a sufficient
condition. But in practice the cases of an invariant such that

Ť

jPJJvj | ψjK Ę
Ť

kPKJwk | γkK should be rare, because often the set
Ť

jPJJvj | ψjK coincides
with ReachRp

Ť

iPIJui | φiKq, which forces the above containment.

5. Verifying other Invariants Negatively. Note that an invariant Q will
contain an inductive invariant Q0 iff Q0 X Qc “ H. Furthermore, it is often
simpler9 to characterize Qc by a disjunction of constrained patterns than to do
so for Q. Suppose that

Ž

jPJ vj | ψj is an inductive invariant from initial states
Ž

iPI ui | φi and that Qc can be specified by a disjunction of constrained pat-
terns

Ž

kPK wk | γk. Then, a sufficient condition for Q to be an invariant from
Ž

iPI ui | φi is that
Ť

jPJJvj | ψjK X
Ť

kPKJwk | γkK “ H. For the exact same
reasons as in Method 4, though possible, it is unlikely that Q is an invariant
from

Ž

iPI ui | φi and
Ť

jPJJvj | ψjK X
Ť

kPKJwk | γkK “ H. The above inter-
section can be computed symbolically, namely, as the set of states denoted by
Ž

jPJ,kPK,αPDUnif Bpvj “wkqpvj | ψj^γkqαq. If no such disjoint unifiers α exist, the
containment is proved. Otherwise, we are left with a disjunction of constrained
terms of the form pvj | ψj^γkqα for some j P J , k P K and α P DUnif Bpvj “ wkq

and the intersection will be empty if for each of them we can prove the inductive
theorem CΣ{E⃗,B |ù ␣pψj ^ γkqα. Note that if we have proved in this, negative
way that Q is an invariant from

Ž

iPI ui | φi, we have actually proved 2|K| ´ 1
invariants in one blow, namely, that the complement of the set of states denoted
by

Ž

kPK0
wk | γk for any non-empty K0 Ď K is an invariant from

Ž

iPI ui | φi.

4 Verifying Invariants with DM-Check and NuITP

DM-Check is a deductive model checker based on constrained narrowing cur-
rently under construction publicly available at http://safe-tools.dsic.upv.

9 One case where this does not happen is deadlock-freedom, where a proof by the
positive method is easier: see §4 for an example.
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es/dmc. DM-Check uses Maude’s NuITP [6] inductive theorem prover with a
default proof strategy σ as an oracle for two purposes: (i) to check subsumptions
u | φ ĎBΩ

v | ψ, and (ii) to check whether u | φ denotes an empty set of states
because φ is inductively unsatisfiable. The Maude system modules analyzed
by DM-Check are topmost rewrite theories R satisfying the requirements in
Theorem 1. At present, only unconditional rewrite theories are supported. This
restriction will be removed in a future version.

For the purposes of verifying invariants, DM-Check offers the following four
commands, where M is the name of the system module specifying R:

1. check-inv in M :
Ž

iPI ui | φi .
2. check in M :

Ž

iPI ui | φi subsumed-by
Ť

jPJJvj | ψjK .
3. intersect in M :

Ž

iPI ui | φi with
Ť

jPJJvj | ψjK .
4. add lemma

Ź

ui “ ji ñ
Ź

uj “ jj .

Command (1) uses one step of constrained narrowing to check that
Ž

iPI ui |

φi is transition-closed. It returns any constrained patterns after one-step con-
strained narrowing that could not be subsumed into

Ž

iPI ui | φi by using a
default proof strategy σ as an oracle to discard any resulting constrained pat-
terns whose constraints can be shown unsatisfiable.

Command (2) tries to find for each i P I and j P J such that ui | φi ĎBΩ
vj |

ψj using NuITP as an oracle just as the previous command does.
Command (3) computes the intersection (conjunction) of

Ž

iPI ui | φi and
Ť

jPJJvj | ψjK by disjoint BΩ-unification, again using NuITP as an oracle to
discard any constrained patterns in the resulting disjunction whose constrains
can be shown unsatisfiable.

Command (4) adds an auxiliary lemma to the current module and delegates
its proof to NuITP.

In all four commands, DM-Check and the NuITP work in tandem to
support the verification methodology proposed in §3 as follows: (i) DM-Check
(invoking NuITP as an oracle with proof strategy σ10) supports the automated
parts of Methodologies (1)–(5). Instead, the NuITP supports the deductive parts
of Methodologies (1)–(5) that could not be proved automatically. We illustrate
below this work in tandem between automated and interactive proof by proving
several invariants for a fair Readers and Writers protocol example.

DM-Check runs on top of Maude (the latest version, Maude Alpha 156,
or later should be used). With Maude already installed, to use DM-Check
one should download it from its web page and unzip the downloaded file into a
folder. DM-Check already contains NuITP as an automatic oracle. However,
to carry out interactive proofs with NuITP (which also runs on top of Maude)
one should download it from its own web page following the instructions there.

Once Maude and DM-Check are available, to verify some invariant-related
properties one should: (i) start Maude; (ii) load the Maude system module one
wants to verify properties about, which should be a topmost rewrite theory, and
10 At present, σ applies a collection of NuITP formula simplification rules.
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(iii) give the command load dm-check-ui.maude in Maude to load the tool.
Once in the tool interface, the commands explained above and illustrated in the
example below can be given to verify properties about the given module.

A Fair Readers and Writers Example. To illustrate how the methodology
presented in §3 is supported by DM-Check and NuITP, we use a fair Readers
and Writers protocol whose states have the form [n]<r,w>[i|j], where n is a
parameter specifying the maximum number of readers that can participate in the
protocol, r is the current number of readers, w is the current number of writers,
and the last two components of the state are “token slots” holding i, resp. j,
tokens that a reader either: (i) needs to get from the first slot to participate in
the protocol; or (ii) returns to the second slot after leaving the protocol. The
data elements n, r, w, i and j are all natural numbers with ` an associative-
commutative natural number constructor with identity element 0. That is, any
number is either 0, 1, or a sum 1` n. . . `1. Readers and writers take turns by
“permuting” the two token slots i and j. This makes the system fair, in the
sense that neither readers nor writers can be starved from participation. The
four transition rules are as follows:

rl [w-in]: [N]< 0,0 >[ 0 | N] => [N]< 0,1 >[0 | N] .
rl [w-out]: [N]< 0,1 >[ 0 | N] => [N]< 0,0 >[N | 0] .
rl [r-in]: [K + N + M + 1]< N,0 >[M + 1 | K]

=> [K + N + M + 1]< N + 1,0 >[M | K] .
rl [r-out]: [K + N + M + 1]< N + 1,0 >[M | K]

=> [K + N + M + 1]< N,0 >[M | K + 1] .

The initial state is parametric on the total number of readers. It is defined
by the following pattern, where NZ ranges over non-zero natural numbers:

[NZ]< 0,0 >[ 0 | NZ ] .

Verifying and Inductive Invariant. The proposed inductive invariant is a dis-
junction of several configurations satisfying two properties: (a) only one writer
is allowed in the writing state and (b) n “ r`w` i` j. In this case, thanks to
the expressiveness of the associative-commutative number representation, no ex-
plicit constraints are needed in the patterns. This invariant is parametric on the
number of readers, since we have variables ranging over numbers in the first ar-
gument of the configurations as well as in other arguments, where N1, N2,M,K
range over natural numbers and NZ ranges over non-zero natural numbers. The
command to verify the inductive invariant, which contains the parametric initial
state [NZ]< 0,0 >[ 0 | NZ] as its first pattern, is as follows:
DM-Check> check-inv in R&W-FAIR :

([NZ]< 0,0 >[ 0 | NZ]) | true \/
([NZ]< 0,1 >[ 0 | NZ]) | true \/
([NZ + K + M]< M,0 >[NZ | K]) | true \/
([NZ + K + M]< NZ,0 >[M | K]) | true \/
([NZ + K + M]< M,0 >[K | NZ]) | true \/
([1 + N1 + N2]< 1 + N1, 0 >[0 | N2]) | true \/
([1 + N1 + N2]< 0, 0 >[N1 | 1 + N2]) | true \/
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([1 + N1 + N2]< N1, 0 >[0 | 1 + N2]) | true \/
([1 + N1]< 0, 1 >[0 | 1 + N1]) | true \/
([1 + N1]< 0, 0 >[1 + N1 | 0]) | true .

DM-Check confirms that the inductive invariant is satisfied, so no additional
proof obligations need to be handled.

Verifying Deadlock Freedom Positively with the help of NuITP. We
can also try to check whether the system is deadlock-free using DM-Check.
For this, it is enough to prove that the inductive invariant is subsumed by the
set of all non-deadlock states, that is, by all states that are enabled to make
a transition. But the enabled states have a simple description as a disjunction
of patterns, namely, the left-hand sides of the system’s rules. The command to
check deadlock freedom this way in DM-Check is as follows.
DM-Check> check ([NZ]< 0,0 >[ 0 | NZ]) | true \/

([NZ]< 0,1 >[ 0 | NZ]) | true \/
([NZ + K + M]< M,0 >[NZ | K]) | true \/
([NZ + K + M]< NZ,0 >[M | K]) | true \/
([NZ + K + M]< M,0 >[K | NZ]) | true \/
([1 + N1 + N2]< 1 + N1, 0 >[0 | N2]) | true \/
([1 + N1 + N2]< 0, 0 >[N1 | 1 + N2]) | true \/
([1 + N1 + N2]< N1, 0 >[0 | 1 + N2]) | true \/
([1 + N1]< 0, 1 >[0 | 1 + N1]) | true \/
([1 + N1]< 0, 0 >[1 + N1 | 0]) | true

subsumed-by
((([N]< 0,0 >[ 0 | N]) | true) \/
(([N]< 0,1 >[ 0 | N]) | true) \/
(([K + N + M + 1]< N,0 >[M + 1 | K]) | true) \/
(([K + N + M + 1]< (N + 1), 0 >[M | K]) | true)) .

DM-Check indicates that some of the constrained patterns in the inductive
invariant cannot be subsumed by any of the patterns specifying the deadlock-
free states (i.e., by any transition lefhand side).
Term 7: [NZ + K + M]< M, 0 >[NZ | K]
Matching: no matching found
Constraint 7: true

Term 8: [NZ + K + M]< NZ, 0 >[M | K]
Matching: no matching found
Constraint 8: true

Term 9: [NZ + K + M]< M, 0 >[K | NZ]
Matching: no matching found
Constraint 9: true

Term 11: [1 + N1 + N2]< 0, 0 >[N1 | 1 + N2]
Matching: no matching found
Constraint 11: true

Term 12: [1 + N1 + N2]< N1, 0 >[0 | 1 + N2]
Matching: no matching found
Constraint 12: true

The reason is that some of the patterns in the inductive invariant are too
general to be subsumed by a single transition lefthand side pattern. But this
of course does not mean that they could not be contained in their union, so
that the system is indeed deadlock free. This can be shown by passing from the
automatic verification mode supported by DM-Check to the interactive mode

74



supported by NuITP. As explained in §3, we can carry out an inductive proof
of the containment of the non-subsumed patterns of the inductive invariant into
the set of enabled states by first defining the following predicate:

op enabled : Conf -> Pred .
eq enabled([N]< 0,0 >[ 0 | N]) = tt .
eq enabled([N]< 0,1 >[ 0 | N]) = tt .
eq enabled([K + N + M + 1]< N,0 >[M + 1 | K]) = tt .
eq enabled([K + N + M + 1]< N + 1,0 >[M | K]) = tt .

Then, by using the following NuITP commands we can prove that all non-
subsumed patterns of the inductive invariant satisfy the enabled predicate:
set goal
(enabled([NZ:NzNat + K:Nat + M:Nat]< M:Nat, 0 >[NZ:NzNat | K:Nat]) = tt) /\
(enabled([NZ:NzNat + K:Nat + M:Nat]< NZ:NzNat, 0 >[M:Nat | K:Nat]) = tt) .

apply cas! to 0 on \$3:NzNat .

set goal
enabled([NZ:NzNat + K:Nat + M:Nat]< M:Nat, 0 >[K:Nat | NZ:NzNat]) = tt .

apply cas! to 0 on \$2:Nat .
apply cas! to 0.1 on \$1:Nat .

set goal enabled([1 + N1:Nat + N2:Nat]< 0, 0 >[N1:Nat | 1 + N2:Nat]) = tt .
apply cas! to 0 on \$1:Nat .

set goal enabled([1 + N1:Nat + N2:Nat]< N1:Nat, 0 >[0 | 1 + N2:Nat]) = tt .
apply cas! to 0 on \$1:Nat .

In this way, the deadlock-freedom invariant is proved for our inductive in-
variant and therefore for all states reachable from the parametric initial states.

Verifying Mutual Exclusion Negatively. We can prove the mutex invariants
negatively. The mutex violation states are characterized by the pattern:

[N + 1 + I + 1 + J + L]< N + 1, I + 1 >[L | J]

As explained in §3, we can prove negatively that mutex holds for the inductive
invariant, and therefore for the system’s reachable states from its parametric set
of initial states, by means of the intersection command:
DM-Check> intersect ([NZ]< 0,0 >[ 0 | NZ]) | true \/

([NZ]< 0,1 >[ 0 | NZ]) | true \/
([NZ + K + M]< M,0 >[NZ | K]) | true \/
([NZ + K + M]< NZ,0 >[M | K]) | true \/
([NZ + K + M]< M,0 >[K | NZ]) | true \/
([1 + N1 + N2]< 1 + N1, 0 >[0 | N2]) | true \/
([1 + N1 + N2]< 0, 0 >[N1 | 1 + N2]) | true \/
([1 + N1 + N2]< N1, 0 >[0 | 1 + N2]) | true \/
([1 + N1]< 0, 1 >[0 | 1 + N1]) | true \/
([1 + N1]< 0, 0 >[1 + N1 | 0]) | true

with
([N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J]) | true .

DM-Check confirms an empty intersection, i.e., the mutex invariant holds.
Veryfying One-Writer Negatively. We can also prove negatively the one-
writer invariant, i.e., that there is never more than one writer in the states of
the inductive invariant. The pattern specifying the violation of this property is:
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[N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J]

We can prove one-writer negatively by giving the command:
DM-Check> intersect ([NZ]< 0,0 >[ 0 | NZ]) | true \/

([NZ]< 0,1 >[ 0 | NZ]) | true \/
([NZ + K + M]< M,0 >[NZ | K]) | true \/
([NZ + K + M]< NZ,0 >[M | K]) | true \/
([NZ + K + M]< M,0 >[K | NZ]) | true \/
([1 + N1 + N2]< 1 + N1, 0 >[0 | N2]) | true \/
([1 + N1 + N2]< 0, 0 >[N1 | 1 + N2]) | true \/
([1 + N1 + N2]< N1, 0 >[0 | 1 + N2]) | true \/
([1 + N1]< 0, 1 >[0 | 1 + N1]) | true \/
([1 + N1]< 0, 0 >[1 + N1 | 0]) | true

with
([N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J) | true .

DM-Check confirms an empty intersection, i.e., the one-writer invariant holds.
Other Examples, besides Readers and Writers fair above and ABP below,
can be found in the DM-Check web page, including bakery, token ring, an
imperative program, and a tree-processing program written in OCaml.

5 A Case Study: the Alternating Bit Protocol

The Alternating Bit Protocol (ABP) [4] is a data layer protocol to achieve reliable
communication between two processes over an unreliable channel. For ABP,
the reliable communication property means that whenever n packets have been
delivered, these are the first n packets sent in that particular order. This property
has been formally verified using the InvA tool [25]. However, InvA has two
limitations that make the verification process much more complex and tedious.

– InvA does not support non-commutative associative operators. However,
ABP involves queues that are naturally specified with associative operators.

– InvA only supports invariants specified by Boolean predicates. The user must
define auxiliary operators to specify conditions depending on state patterns.

Because of these limitations, the user needs to define and prove many (about
10) lemmas on auxiliary operators to verify ABP with InvA.11

This section presents a case study on proving an invariant property of ABP
using DM-Check. In contrast to the previous work [25], we can freely use any
associative operators to specify the system, and enjoy the great expressiveness
of constrained patterns to specify invariant conditions. This allows us to easily
specify a fairly complex invariant property for reliable communication of ABP,
and automatically prove it with only two auxiliary lemmas. The lemmas can also
be proved automatically using NuITP.
11 For example, in [25] a queue is defined using an empty list nil and a non-associative

list constructor _::_, with auxiliary functions such as append defined recursively.
Five predicates are declared in [25], and there are many lemmas about interactions
between these predicates and the append function. We refer to [25] for further details.

76



Our ABP specification is adapted from [25], by using associative operators
for queues instead of free operators with auxiliary functions. A state of our ABP
specification has the form N : B > BPQ || BQ < B’ : NL, where N denotes the
data currently being sent, B denotes the bit of the sender, BPQ denotes the data
channel, BQ denotes the acknowledge channel, B’ is the bit of the receiver, and
NL denotes the output stream, declared using the following operator:

op _:_>_||_<_:_ : iNat Bit BitPacketQue BitQue Bit iList -> Sys [ctor] .

The following rewrite rules define the behavior of ABP.12 They specify the
sending of bit-packets over the data channel, the receiving of acknowledgments
from the receiver, and the duplication and loss of data in the unreliable channel.
vars B B1 B2 : Bit . var BP : BitPacket . var BQ : BitQue .
vars N M : iNat . var BPQ : BitPacketQue . var NL : iList .

rl [send-1]: N : B > BPQ || BQ < B1 : NL => N : B > BPQ (B, N) || BQ < B1 : NL .
rl [send-2]: N : B > BPQ || BQ < B1 : NL => N : B > BPQ || BQ B1 < B1 : NL .

rl [recv-1a]: N : B > BPQ || B BQ < B1 : NL => N : B > BPQ || BQ < B1 : NL .
rl [recv-1b]: N : on > BPQ || off BQ < B1 : NL => 1 + N : off > BPQ || BQ < B1 : NL .
rl [recv-1c]: N : off > BPQ || on BQ < B1 : NL => 1 + N : on > BPQ || BQ < B1 : NL .

rl [recv-2a]: N : B > (on, M) BPQ || BQ < on : NL => N : B > BPQ || BQ < off : (M :: NL) .
rl [recv-2b]: N : B > (off,M) BPQ || BQ < off : NL => N : B > BPQ || BQ < on : (M :: NL) .
rl [recv-2c]: N : B > (off,M) BPQ || BQ < on : NL => N : B > BPQ || BQ < on : NL .
rl [recv-2d]: N : B > (on, M) BPQ || BQ < off : NL => N : B > BPQ || BQ < off : NL .

rl [dup-1]: N : B > BP BPQ || BQ < B1 : NL => N : B > BP BP BPQ || BQ < B1 : NL .
rl [dup-2]: N : B > BPQ || B2 BQ < B1 : NL => N : B > BPQ || B2 B2 BQ < B1 : NL .

rl [drop-1a]: N : B > (off,M) BPQ || BQ < B1 : NL => N : B > BPQ || BQ < B1 : NL .
rl [drop-1b]: N : B > (on, M) BPQ || BQ < B1 : NL => N : B > BPQ || BQ < B1 : NL .
rl [drop-2a]: N : B > BPQ || off BQ < B1 : NL => N : B > BPQ || BQ < B1 : NL .
rl [drop-2b]: N : B > BPQ || on BQ < B1 : NL => N : B > BPQ || BQ < B1 : NL .

We define the following functions to specify the invariant property for reliable
communication. The function aP(bpQueue, N) returns True if every packet in
bpQueue has data value N , defined using three auxiliary functions. The function
gen(N) returns the list of the first N numbers in descending order.
op aP : BitPacketQue iNat -> iBool . op n : BitPacket -> iNat .
eq aP(BPQ, N) = allN(ns(BPQ), N) . eq n((B,N)) = N .

op allN : iSet iNat -> iBool . eq allN(none, N) = True .
eq allN(N ; NS, N) = allN(NS, N) . ceq allN(M ; NS, N) = False if (M ~ N) = False .

op gen : iNat -> iList . op ns : BitPacketQue -> iSet .
eq gen(0) = 0 . eq ns(nil) = none .
eq gen(1 + N) = (1 + N) :: gen(N) . eq ns(BPQ BP BPQ’) = n(BP) ; ns(BPQ BPQ’) .

We need the following two lemmas for the function allN to prove the desired
invariant property. This lemma can be automatically proved in NuITP using
the narrowing induction command.
12 It is possible to simplify some of these rules; for example, drop-1a and drop-1b can

be merged into a single rule. However, to ensure a fair comparison, we use the same
rewrite rules as [25], except for the use of associative operators.
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DM-Check> add lemma (allN(M ; NS, N) = tt) -> (M = N) /\ (allN(NS, N) = tt) .

DM-Check> add lemma ((tt = allN(M ; ns(BPQ), 1 + N)) /\ ((1 + N :: NL) = (1 + N :: gen(N)))) ->
(tt = allN(ns(BPQ), 1 + N)) /\ (M :: NL) = (1 + N :: gen(N)) .

Finally, we declare the invariant property for reliable communication of ABP
as follows. It is specified as a disjunction of six constrained patterns, each of
which indicates that the reliable communication property holds (given by the gen
function) and the data and acknowledgement channels are in “good” condition
(given by the aP function). DM-Check can automatically prove this invariant
property, assuming the lemma above.

DM-Check> check-inv
((0 : on > Q’ || P < on : nilL) | (aP(Q’,0) = tt)) \/
((0 : off > Q’ || P < off : nilL) | (aP(Q’,0) = tt)) \/
((1 + N : on > Q Q’ || P < on : L) | ((1 + N :: L) = gen(1 + N)) /\

(aP(Q,N) = tt) /\ (aP(Q’,1 + N) = tt)) \/
((1 + N : off > Q Q’ || P < off : L) | ((1 + N :: L) = gen(1 + N)) /\

(aP(Q,N) = tt) /\ (aP(Q’,1 + N) = tt)) \/
((N : on > Q || P P’ < off : L) | (L = gen(N)) /\ (aP(Q,N) = tt)) \/
((N : off > Q || P P’ < on : L) | (L = gen(N)) /\ (aP(Q,N) = tt)) .

Invariant satisfied using the following lemmas:

((tt = allN(M ; ns(BPQ), 1 + N)) /\ (1 + N :: NL) = (1 + N :: gen(N))) ->
(tt = allN(ns(BPQ), 1 + N)) /\ (M :: NL) = (1 + N :: gen(N))

tt = allN(M ; NS, N) -> (tt = allN(NS, N)) /\ N = M

6 Related Work

The closest to our work is [25] and the Maude Invariant Analyzer tool (InvA).
They consider some automatic proof search techniques that can be considered as
simple theorem proving techniques, now subsumed by NuITP: (a) equational
simplification, (b) context joinability, (c) unfeasability, and (d) SMT solving
(for natural numbers). Indeed, the running example of [25], the alternating bit
protocol, is now proved almost automatically. The alternating bit protocol was
originally analyzed by [22] and the InvA tool already showed some improvement
by automating some deduction steps. In our work, these steps are fully automatic
and only two auxiliary lemmas are necessary.

The approach to invariant verification based on proof scores using CafeOBJ
[13, 23, 21] has demonstrated its applicability to many different case studies in
the literature. It includes three major steps lemma, case-split, and induction that
a human has to encode within the specification and, if all these three major steps
are reduced in such a way that they return the expected results, a proof score is
achieved. As explained above with the alternating bit protocol, our approach is
much more automatic and a user only needed to add an auxiliary lemma. The
Invariant Proof Score Generator (IPSG) [28] helps automating some steps such
as equational reduction or case splitting but still relies on a human providing
the necessary lemmas.
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Our work is also related to narrowing-based logical model checking [1–3, 8,
10, 11], which targets linear temporal logic properties (including invariants). In
contrast to our method, they require that the equational theory satisfies the
finite variant property or SMT solving is used, which severely limits the systems
that can be specified, as mentioned in §2.

[26] translates Maude rewrite theories into the Microsoft Lean theorem prover.
Several properties, including invariants and deadlock, can be proved but the
translation does not preserve the modulo reasoning capabilities of Maude and
requires heavy user interaction within Lean.

7 Conclusions

We have explained how narrowing-based logical model checking of constrained
patterns and inductive theorem proving can be synergistically combined to ver-
ify invariants, including inductive ones, of infinite-state systems; and we have
used the DM-Check and NuITP tools and Maude examples to demostrate
this metodology. Much work remains ahead. A richer interaction between DM-
Check and NuITP should be supported in the future. This richer interaction
will support, not just invariant verification, but also the reaching of a fixpoint
when performing symbolic model checking with DM-Check. Furthermore, sub-
stantial experimentation with examples is needed to advance both areas.

References

1. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-
state systems using narrowing. In: RTA 2013. LIPIcs, vol. 21, pp. 81–96. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

2. Bae, K., Meseguer, J.: Infinite-state model checking of LTLR formulas using nar-
rowing. In: Proc. WRLA 2014. LNCS, vol. 8663, pp. 113–129. Springer (2014)

3. Bae, K., Meseguer, J.: Predicate abstraction of rewrite theories. In: RTA-TLCA.
Lecture Notes in Computer Science, vol. 8560, pp. 61–76. Springer (2014)

4. Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex
transmission over half-duplex links. Communications of the ACM 12(5), 260–261
(1969)

5. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, Vol. B, pp. 243–320. North-Holland (1990)

6. Durán, F., Escobar, S., Meseguer, J., Sapiña, J.: NuITP alpha 21 – an inductive
theorem prover for maude equational theories, available at https://nuitp.webs.
upv.es/

7. Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., Meseguer, J., Rubio, R., Tal-
cott, C.L.: Programming and symbolic computation in Maude. J. Log. Algebraic
Methods Program. 110 (2020)

8. Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., Meseguer, J., Rubio, R., Tal-
cott, C.L.: Equational unification and matching, and symbolic reachability anal-
ysis in Maude 3.2. In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) Auto-
mated Reasoning - 11th International Joint Conference, IJCAR 2022, Haifa, Is-
rael, August 8-10, 2022, Proceedings. Lecture Notes in Computer Science, vol.

79



13385, pp. 529–540. Springer (2022). https://doi.org/10.1007/978-3-031-10769-
6\_31, https://doi.org/10.1007/978-3-031-10769-6\_31

9. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol anal-
ysis modulo equational properties. In: Foundations of Security Analysis and Design
V, FOSAD 2007/2008/2009 Tutorial Lectures, LNCS, vol. 5705, pp. 1–50. Springer
(2009)

10. Escobar, S., López-Rueda, R., Sapiña, J.: Symbolic analysis by using folding nar-
rowing with irreducibility and SMT constraints. In: Artho, C., Ölveczky, P.C.
(eds.) Proceedings of the 9th ACM SIGPLAN International Workshop on For-
mal Techniques for Safety-Critical Systems, FTSCS 2023, Cascais, Portugal, 22
October 2023. pp. 14–25. ACM (2023). https://doi.org/10.1145/3623503.3623537,
https://doi.org/10.1145/3623503.3623537

11. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Proc. RTA. Lecture Notes in Computer Science, vol. 4533, pp. 153–
168 (2007)

12. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Algebraic and Logic Programming 81, 898–928 (2012)

13. Futatsugi, K.: Advances of proof scores in CafeOBJ. Sci. Comput. Program. 224,
102893 (2022). https://doi.org/10.1016/J.SCICO.2022.102893, https://doi.org/
10.1016/j.scico.2022.102893

14. Goguen, J., Meseguer, J.: Order-sorted algebra I: Equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theoretical Computer
Science 105, 217–273 (1992)

15. Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting.
J. Log. Algebr. Meth. Program. 85(1), 67–97 (2016)

16. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to the verification of cryptographic protocols. J. Higher-Order and
Symbolic Computation 20(1–2), 123–160 (2007)

17. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

18. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Proc. WADT’97. pp. 18–61. Springer LNCS 1376 (1998)

19. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program.
154, 3–41 (2018)

20. Meseguer, J.: Generalized rewrite theories, coherence completion, and symbolic
methods. J. Log. Algebraic Methods Program. 110 (2020)

21. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: Najm,
E., Nestmann, U., Stevens, P. (eds.) Formal Methods for Open Object-Based Dis-
tributed Systems, 6th IFIP WG 6.1 International Conference, FMOODS 2003,
Paris, France, November 19.21, 2003, Proceedings. Lecture Notes in Computer
Science, vol. 2884, pp. 170–184. Springer (2003). https://doi.org/10.1007/978-3-
540-39958-2\_12, https://doi.org/10.1007/978-3-540-39958-2\_12

22. Ogata, K., Futatsugi, K.: Simulation-based verification for invariant properties in
the OTS/CafeOBJ method. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) Pro-
ceedings of the BCS-FACS Refinement Workshop, REFINE@IFM 2007, Oxford,
UK, July 2007. Electronic Notes in Theoretical Computer Science, vol. 201, pp.
127–154. Elsevier (2007). https://doi.org/10.1016/J.ENTCS.2008.02.018, https:
//doi.org/10.1016/j.entcs.2008.02.018

23. Ogata, K., Futatsugi, K.: Theorem proving based on proof scores for
rewrite theory specifications of OTSs. In: Iida, S., Meseguer, J., Ogata,

80



K. (eds.) Specification, Algebra, and Software - Essays Dedicated to Ko-
kichi Futatsugi. Lecture Notes in Computer Science, vol. 8373, pp. 630–656.
Springer (2014). https://doi.org/10.1007/978-3-642-54624-2\_31, https://doi.
org/10.1007/978-3-642-54624-2\_31

24. Pnueli, A.: Deduction is forever (1999), invited talk at FM’99 avaliable online at
cs.nyu.edu/pnueli/fm99.ps

25. Rocha, C., Meseguer, J.: Mechanical analysis of reliable communication in the
alternating bit protocol using the Maude invariant analyzer tool. In: Specification,
Algebra, and Software - Essays Dedicated to Kokichi Futatsugi. Lecture Notes in
Computer Science, vol. 8373, pp. 603–629. Springer (2014)

26. Rubio, R., Riesco, A.: Theorem proving for maude specifications using lean. In:
Riesco, A., Zhang, M. (eds.) Formal Methods and Software Engineering - 23rd In-
ternational Conference on Formal Engineering Methods, ICFEM 2022, Madrid,
Spain, October 24-27, 2022, Proceedings. Lecture Notes in Computer Science,
vol. 13478, pp. 263–280. Springer (2022). https://doi.org/10.1007/978-3-031-17244-
1\_16, https://doi.org/10.1007/978-3-031-17244-1\_16

27. Slagle, J.R.: Automated theorem-proving for theories with simplifiers commutativ-
ity, and associativity. J. ACM 21(4), 622–642 (1974)

28. Tran, D.D., Ogata, K.: IPSG: invariant proof score generator. In: Leong, H.V.,
Sarvestani, S.S., Teranishi, Y., Cuzzocrea, A., Kashiwazaki, H., Towey, D., Yang,
J., Shahriar, H. (eds.) 46th IEEE Annual Computers, Software, and Applications
Conferenc, COMPSAC 2022, Los Alamitos, CA, USA, June 27 - July 1, 2022. pp.
1050–1055. IEEE (2022). https://doi.org/10.1109/COMPSAC54236.2022.00164,
https://doi.org/10.1109/COMPSAC54236.2022.00164

81



Specifying fairness constraints and model
checking with non-intensional strategies

Rubén Rubio , Narciso Martí-Oliet , Isabel Pita , and Alberto Verdejo

Facultad de Informática,
Universidad Complutense de Madrid, Madrid, Spain
{rubenrub, narciso, ipandreu, jalberto}@ucm.es

Abstract. Strategies are a natural way of specifying constraints in a
rewriting-based model. They are often expressed as executable programs
in some strategy language that intensionally filter the possible next
rewrites. Hence, they cannot capture restrictions of the model involv-
ing unbounded delays, like fairness, which are useful in many verifica-
tion scenarios. In this paper, we propose a variation to the semantics
of the Maude strategy language that allows expressing non-intensional
strategies without recursion, in a way amenable for verification. Then we
present an LTL model checker for this kind of strategies and discuss the
corresponding problem for other logics.

1 Introduction

In order to formally reason about discrete systems, their behavior and prop-
erties should be conveniently modeled. State and transition systems are the
simplest model of a dynamic system, yet the most useful for several verification
techniques. For model checking [10], transition systems are extended by label-
ing their states or transitions with atomic propositions, which are then used to
specify properties about their dynamic behavior using temporal logics like LTL,
CTL, and 𝜇-calculus. While transition systems are adequate to represent the
local, executable behavior of the system, they cannot embody whole-execution
restrictions involving unbounded nondeterminism, like fairness, which are con-
venient in several verification scenarios. In logics like LTL, fairness constraints
can be expressed in the formula itself as long as the atomic propositions are de-
tailed enough. For some other logics like CTL, model-checking algorithms have
been extended to receive fairness constraints as another piece of input. Moreover,
some formalisms have been proposed to embed those restrictions into the model
itself, like fair Kripke structures [20].

Maude [11] is a high-level specification and programming language based on
rewriting logic [23]. Specifications are organized in modules: functional modules
describe membership equational theories [5] with sort and operator declarations,
equations, and membership axioms; system modules extend them with rewrite
rules acting on those terms; and finally, strategy modules define strategies to con-
trol or guide the application of rules using the Maude strategy language [13,16].
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Maude specifications, even strategy-controlled ones [30,31], can be seen as Kripke
structures with the terms as states and their rewrites as transitions, and model
checked with a built-in LTL model checker [17] or other external tools [1,2,30,31].
In this context, strategies are useful to represent constraints on the model behav-
ior, but they cannot capture requirements entailing unbounded nondeterminism
with the usual executable semantics [12]. The strategy-constrained model used
for model checking is also a standard Kripke structure that cannot represent
fairness or similar properties.

Several combinators of the Maude strategy language (and other similar lan-
guages like ELAN [4], Stratego [7], 𝜌Log [21], or Porgy [18]) are inspired on
regular expressions: union (|), concatenation (;), the empty language (fail),
the empty word (idle), basic symbols (rule applications), and the Kleene star
(*). Like in regular expressions, the Kleene star of the Maude strategy language
(called iteration) executes its argument zero or more times nondeterministically,
but unlike them, it also allows repeating its argument forever. In other words,
𝛼* in the strategy language corresponds to 𝛼∗ ∣ 𝛼𝜔 instead of 𝛼∗ as an 𝜔-regular
expression. This deviation is completely immaterial when evaluating strategies
to compute results, but it may matter when model checking. Using a faithful
semantics for the Kleene star operator, we will be able to represent fairness
and similar constraints within the strategy, at the expense of some additional
complexity.

In this paper, we modify the semantics of the Maude strategy language in
order to maintain the usual meaning of the Kleene star and so allow expressing
long-run constraints within strategies. Model checking under this interpretation
of strategies is achieved by extending the standard automata-theoretic approach
for LTL model checking [10]. In the standard case, in order to check ℳ ⊨ 𝜑, the
transition system ℳ is seen as a trivial automaton, the negated LTL property
¬𝜑 is transformed to a Büchi automaton, and the emptiness of their product
is checked. If the product is empty, the property is satisfied; and otherwise,
an accepted run in the product automaton yields an execution that does not
satisfy the temporal property. In our case, instead of a plain transition system
ℳ, we generate a Streett automaton for the strategy-controlled Maude model
and proceed likewise. This procedure is implemented in our tool umaudemc [29],
which relies on the Maude Python bindings [26] to communicate with Maude
and on the Spot library [15] to build the 𝜔-automata and operate with them.
For other logics, model checking can also be achieved by generating artificial
atomic propositions and transforming the input formula, an approach that is
also implemented in our tool.

The paper is organized as follows. After some preliminaries in Section 2, the
standard small-step semantics of the Maude strategy language is explained in
Section 3 and modified as anticipated before in Section 4. Section 5 discusses
how to model check LTL properties for strategy-controlled systems under this se-
mantics, explains the implementation details, and outlines an alternative method
amenable for other logics. Finally, Section 6 discusses related work and Section 7
concludes the paper. This paper is based on unpublished material from the first
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author’s PhD thesis [28], although significantly improved with a new implemen-
tation and simpler formalizations. Source code, documentation, and examples
can be found at github.com/fadoss/umaudemc.

2 Preliminaries

In this section, we recall some topics and introduce some notation that will be
used in the rest of the paper. Given an alphabet 𝑆, a finite word 𝑠1 ⋯ 𝑠𝑛 ∈ 𝑆∗ is
a finite sequence of symbols in 𝑆, and 𝜀 denotes the empty word. Similarly, an
infinite word 𝑠0 𝑠1 ⋯ ∈ 𝑆𝜔 is an infinite sequence of symbols in 𝑆. We write 𝑤𝑖
for the 𝑖-th symbol in 𝑤, and 𝑤𝑖 = 𝑤𝑖𝑤𝑖+1 ⋯. For an infinite word 𝑤 ∈ 𝑆𝜔, we
denote by inf(𝑤) the set of all symbols 𝑠 ∈ 𝑆 that appear infinitely often in 𝑤.

Strategies. Since rewrite rules can be applied in different orders and into different
subterms, rewriting is intrinsically nondeterministic. However, sometimes it is
convenient to control the application of rules to exclude unwanted behaviors
or guide a search to the desired goal. Rewriting strategies play that role and
they have been widely studied in the context of functional programming, the
𝜆-calculus, and abstract rewriting. In [6], the authors propose two convenient
abstract formalization of strategies. Given an abstract reduction system 𝒜 =
(𝑆, →) with a set of states 𝑆 and a binary relation →, its set of executions is
Ex𝜔(𝒜) = {𝜋 ∈ 𝑆𝜔 ∣ 𝜋𝑘 → 𝜋𝑘+1, 𝑘 ∈ ℕ}.1 Strategies can be described

– extensionally as a subset of executions 𝐸 ⊆ Ex𝜔(𝒜) of the system, or
– intensionally as partial functions 𝜆 ∶ 𝑆∗ → 𝒫(𝑆) specifying the possible next

states 𝜆(𝑤) to continue each partial execution 𝑤.

Extensional strategies are strictly more general than intensional ones, because
for any 𝜆 there is 𝐸(𝜆) ≔ {𝜋 ∈ 𝑆𝜔 ∣ 𝜋𝑘 ∈ 𝜆(𝜋0 ⋯ 𝜋𝑘−1), 𝑘 ∈ ℕ}, and {𝑎𝑛𝑏𝜔 ∣
𝑛 ∈ ℕ} cannot be represented intensionally (𝑎𝜔 cannot be excluded). Indeed,
the extensional denotations of intensional strategies are characterized as being
closed, i.e. 𝜋 ∈ 𝑆𝜔 is allowed by the strategy if infinitely many prefixes of 𝜋 are
prefixes of words allowed by the strategy [6, Prop. 3]. In the following, we will
denote strategies as subsets of executions, i.e. in the extensional way.

Model checking. Model checking [10] is an automated verification technique
where models are expressed as transition systems and properties as formulas
in some temporal logic. A Kripke structure is a tuple (𝑆, →, 𝐼, 𝐴𝑃 , ℓ) where 𝑆
is a set of states, (→) ⊆ 𝑆 × 𝑆 is a transition relation, 𝐼 ⊆ 𝑆 is a subset of
initial states, 𝐴𝑃 is a finite set of atomic propositions, and ℓ ∶ 𝑆 → 𝒫(𝐴𝑃 ) is the
labeling function of states by atomic propositions. These atomic propositions
𝑎 ∈ 𝐴𝑃 are combined with logical and temporal operators to build formulae
that describe the intended behavior of the system. Linear-time Temporal Logic
1 For simplicity, only nonterminating executions are considered, as usual in the model-

checking literature. Finite ones can be extended by repeating the last state forever.
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(LTL) [25] includes operators like ○ 𝜑 to tell that 𝜑 holds in the next state, □ 𝜑
meaning that 𝜑 always holds, ♦𝜑 when 𝜑 holds at some point in the future, and
𝜑1 U 𝜑2 to tell that 𝜑2 holds at some point in the future and 𝜑1 holds until
then. Other widespread temporal logics are CTL, CTL*, and the 𝜇-calculus.

Maude includes a built-in LTL model checker [16], which has been applied
to several interesting problems [22]. As already mentioned, Maude specifications
can be seen as Kripke structures by taking the terms as states and their rewrites
as the transitions of the model. Atomic propositions can also be represented as
terms and their satisfaction be established equationally. In previous works [30,
31], we have extended the model checker to work with specifications controlled
by strategies in the Maude strategy language. Essentially, regarding a strategy
as a subset of executions, a temporal property 𝜑 holds under a strategy 𝐸 if
it holds for all executions in 𝐸 (or in the tree of executions pruned by 𝐸 for
branching-time logics like CTL).

Automata over infinite words. Many LTL model checkers use the so-called
automata-theoretic approach, which reduces model checking to a language con-
tainment problem ℓ(Ex𝜔(𝒦)) ⊆ 𝐿(𝜑) that can be solved with automata. A Büchi
automaton [10] is a tuple (𝑄, Σ, 𝛿, 𝑄0, 𝐹 ) where 𝑄 is a finite set of states, Σ is
a finite alphabet, 𝛿 ∶ 𝑄 × Σ → 𝒫(𝑄) is a nondeterministic transition function,
𝑄0 ⊆ 𝑄 is a set of initial states, and 𝐹 ⊆ 𝑄 is an acceptance condition. 𝜋 ∈ 𝑄𝜔

is a run for a word 𝑤 ∈ Σ𝜔 if 𝜋0 ∈ 𝑄0 and 𝜋𝑘+1 ∈ 𝛿(𝜋𝑘, 𝑤𝑘). The run 𝜋 is
accepting (then 𝑤 is accepted by the automaton) if inf(𝜋) ∩ 𝐹 ≠ ∅, i.e. if some
state in 𝐹 is repeated infinitely often. Well-known procedures exist to translate
LTL formulae to Büchi automata [19].

Sometimes, deciding acceptance based on the transitions instead of the states
is more convenient, and this is what the Spot library does by default. Moreover,
the way of expressing acceptance conditions can be generalized. A transition-
based Streett automaton [14] of index 𝑛 is a tuple (𝑄, Σ, Acc, 𝛿, 𝑄0, 𝐹 ) where
Acc is a finite set of acceptance conditions, 𝛿 ∶ 𝑄 × Σ → 𝒫(𝑄 × 𝒫(Acc)), and
𝐹 = {(𝑎1, 𝑏1), … , (𝑎𝑛, 𝑏𝑛)} ⊆ Acc2. Similarly, a run is defined as a sequence of
pairs 𝑄 × 𝒫(Acc), and (𝑞𝑖, 𝐴𝑖)∞

𝑖=0 is accepting if {𝑖 ∈ ℕ ∣ 𝑎𝑘 ∈ 𝐴𝑖} is finite or
{𝑖 ∈ ℕ ∣ 𝑏𝑘 ∈ 𝐴𝑖} is not finite for all 1 ≤ 𝑘 ≤ 𝑛.

Coming back to model checking, a Kripke structure (𝑆, →, 𝐼, 𝐴𝑃 , ℓ) can be
transformed to an equivalent Büchi automaton (𝑆, 𝒫(𝐴𝑃), 𝛿, 𝐼, ∅) with 𝛿(𝑠, 𝑃 ) =
{𝑠′ ∈ 𝑆 ∣ 𝑠 → 𝑠′} if ℓ(𝑠) = 𝑃, and 𝛿(𝑠, 𝑃 ) = ∅ otherwise, both with trivial
acceptance condition 𝐹 = ∅. Then, the automata-theoretic approach proceeds
by checking the emptiness of the product automaton between the system and the
negated temporal formula. We will slightly adapt this approach to our purposes
in the next sections.

3 The Maude strategy language and its semantics

The Maude strategy language [13, 16] is intended to control the application of
rules when executing and model checking Maude specifications. Its main instruc-
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tion is then the application of a rule, written rl where rl is a rule label.2 Several
operators, similar to those of other strategy languages like ELAN [4], Tom [3],
Stratego [7], 𝜌Log [21], or Porgy [18], can be used to combine these rule applica-
tions into more complex strategic programs. In general, by applying a strategy
expression 𝛼 to a term 𝑡, we expand those rewriting paths from 𝑡 that are al-
lowed by the strategy. Expressions are built with the concatenation operator 𝛼 ;
𝛽 that continues rewriting with 𝛽 every result of 𝛼, the nondeterministic choice
𝛼 | 𝛽 that allows any rewriting path allowed by 𝛼 or 𝛽, fail discards the cur-
rent execution path, idle simply continues to the next instruction, tests match
𝑃 s.t. 𝐶 are equivalent to idle when the term 𝑡 matches 𝑃 and satisfies 𝐶 and
to fail otherwise, and the conditional 𝛼 ? 𝛽 : 𝛾 that continues executing with
𝛽 on the results of 𝛼, but executes 𝛾 directly from the initial term if 𝛼 does not
produce any result. Moreover, strategies can be applied into specific subterms
using matchrew 𝑃 (𝑥1, … , 𝑥𝑛) s.t. 𝐶 by 𝑥1 using 𝛼1, …, 𝑥𝑛 using 𝛼𝑛, and re-
cursive strategy definitions with arguments can be defined in strategy modules.
Another useful combinator, the “star” of this paper, is the iteration strategy 𝛼*
that executes 𝛼 zero or more consecutive times nondeterministically. Under the
standard semantics, it is recursively equivalent to idle | (𝛼 ; 𝛼*).

Let us illustrate strategies with a simple example. The cups and balls is an
ancient performance made with a table, three cups, and a small ball in one of its
multiple variations. The illusionist puts the three cups upside down on the table,
covering the marble with one of them, then swaps them randomly multiple times,
and asks the audience to guess in which cup the ball is inside. The selected cup is
raised to show whether the guess was right. The CUPS-BALLS module is a Maude
system module defining some sorts (MaybeBall, Cup, Table), some constants
and operators (ball, nothing, cup, …), and finally some rules with labels swap,
uncover, and cover. Moreover, the single argument of cup is declared frozen
so that rules like cover cannot be applied on it, because inserting a cup below
a cup does not make sense.

mod CUPS-BALLS is
sorts MaybeBall Cup Table .
subsorts MaybeBall Cup < Table .

ops ball nothing : -> MaybeBall [ctor] .
op cup : MaybeBall -> Cup [ctor frozen] .
op empty : -> Table [ctor] .
op __ : Table Table -> Table [ctor assoc id: empty] .

var T : Table .
vars B? B1? B2? : MaybeBall .

rl [swap] : cup(B1?) T cup(B2?) => cup(B2?) T cup(B1?) .
rl [uncover] : cup(B?) => B? .

2 In this presentation, we will omit for clarity some details of the strategy language that
are orthogonal to the contributions of the paper. For example, there are additional
options in the rule application syntax that we are omitting here.
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rl [cover] : B? => cup(B?) .

op initial : -> Table .
eq initial = cup(nothing) cup(ball) cup(nothing) .

endm

The illusionist will start with only a ball in the table, then it will cover the
ball and the other two places with a cup, yielding our initial state. They will
then swap the cups with swap for a while, one of them will be uncovered with
uncover and shown to the public, then it will be covered back with cover, and
the spectacle starts all over again. We want actions ordered this way, so we
need strategies to limit the unwanted behaviors. For example, we do not want
the illusionist to start swapping two cups before putting the third one down, as
show in the following fragment of the uncontrolled rewrite graph.

Maude> search [, 2] initial =>* cup(ball) cup(nothing) nothing .
...
Maude> show search graph .
state 0, Table: cup(nothing) cup(ball) cup(nothing)
arc 5 ===> state 5 (uncover)
...
state 5, Table: cup(nothing) cup(ball) nothing
arc 1 ===> state 8 (swap)
...
state 8, Table: cup(ball) cup(nothing) nothing

The following strategy module CUPS-BALLS-STRAT provides a strategy cups that
describes the previous procedure.

smod CUPS-BALLS-STRAT is *** strategy module
protecting CUPS-BALLS .

strat cups @ Table . *** strategy declaration
sd cups := swap * ; uncover ; cover ; cups . *** definition

endsm

Notice that cups is nonterminating. No term would be obtained as a result by
rewriting with this strategy, but it can be used to describe the behavior of a
long-running system for model checking.

In order to use the strategy-aware extension of the Maude model checker,
we need to identify the sort of states and define some atomic propositions.
This is done in the following module CUPS-BALLS-PREDS, which includes the
SATISFACTION module provided by the Maude model checker [11, §12].

mod CUPS-BALLS-PREDS is
protecting CUPS-BALLS .
including SATISFACTION .

subsort Table < State .
ops uncovered hit : -> Prop [ctor] .
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vars L R T : Table . var B? : MaybeBall .

eq L B? R |= uncovered = true .
eq T |= uncovered = false [owise] .
eq L ball R |= hit = true .
eq T |= hit = false [owise] .

endm

States are of sort Table and two atomic propositions are defined equationally
on them: uncovered holds whenever the content of a cup (ball or nothing)
is uncovered, and hit is satisfied when this content is ball. According to the
usual meaning of the game, cups must be uncovered infinitely often, and this
can be expressed in LTL as □♦ uncovered. However, if we check this with the
strategy-aware model checker, we obtain the following:
$ umaudemc check cupsballs.maude initial '[] <> uncovered ' cups
The property is not satisfied in the initial state
(13 system states, 52 rewrites , 2 Büchi states)
| cup(nothing) cup(ball) cup(nothing)
∨ swap
| | cup(nothing) cup(nothing) cup(ball)
| ∨ swap
< ∨

The property is not satisfied because swap is repeated forever in a loop. While
this is consistent with the meaning of the iteration, it is not probably what we
want to express when we use the Kleene star.

3.1 Small-step operational semantics

For the purpose of model checking, we introduced in previous works [30] a small-
step operational semantics for the Maude strategy language, whose rules are
shown in Figure 1. The execution states 𝑞 ∈ 𝒳𝒮 of that semantics combine the
term being rewritten with a strategy continuation,

𝑞 ∶≔ 𝑡@ 𝑠 ∣ subterm(𝑡; 𝑥 ∶ 𝑞, … , 𝑥 ∶ 𝑞)@ 𝑠 𝑠 ∶≔ 𝜀 ∣ 𝛼 𝑠 ∣ 𝜎 𝑠

where 𝑡 is a term, 𝑥 is a variable, 𝛼 is a strategy expression (let Strat be the set
of all strategy expressions), 𝜎 is a substitution (acting as a variable context), and
𝑠 is a stack of strategies and substitutions. The subterm execution state holds
the parallel rewriting states of the subterm rewriting operators (matchrew). For
any state 𝑞 ∈ 𝒳𝒮, its current term cterm(𝑞) is defined as cterm(𝑡@ 𝑠) = 𝑡 and
cterm(subterm(𝑡; 𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛)@ 𝑠) = 𝑡[𝑥1/cterm(𝑞1), … , 𝑥𝑛/cterm(𝑞𝑛)].
The small-step operational semantics is defined by a twofold relation in Figure 1:
control transitions →𝑐 advance the execution of the strategy without affecting
the current term, while system transitions →𝑠 perform a single rewrite in the
current term. We write →𝑠,𝑐 = →𝑠 ∪ →𝑐 and ↠ = →𝑠 ∘ →∗

𝑐, i.e. a single rewrite
preceded by as many control transitions as needed. It follows that 𝑞 ↠ 𝑞′ implies
that there is a rewrite from cterm(𝑞) to cterm(𝑞′). With these ingredients, we
can define the set of rewriting paths allowed by an expression.
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Definition 1. Given a strategy expression 𝛼 and a term 𝑡,

𝐸(𝛼, 𝑡) ≔ cterm(Ex𝜔(𝛼, 𝑡))

where Ex𝜔(𝛼, 𝑡) ≔ {𝑞0(𝑞𝑘)∞
𝑘=1 ∣ 𝑞0 = 𝑡 @ 𝛼, 𝑞𝑘 ↠ 𝑞𝑘+1} are all nonterminating

executions of 𝛼 from 𝑡.

The semantic rule for strategy calls in Figure 1 deserves some comment: for
any matching strategy definition sd sl(𝑝1, …, 𝑝𝑛) := 𝛿 in the current strat-
egy module, it pushes the matching substitution 𝜎 of the call term into the
left-hand side of the definition as variable context, and also the strategy expres-
sion 𝛿 to continue rewriting with it. Tail calls can be easily characterized as those
in which the top of 𝑠 is also a substitution, and in this case we replace the top
substitution with the new one instead of preserving both. This allows expressing
nonterminating cyclic executions with a finite state space, which is quite useful
for model checking. This optimization can be seen as an equation 𝜎′𝜎 = 𝜎′ on
the execution stack.

We can then consider the Kripke structure ℳ𝛼,𝑡 ≔ (𝒳𝒮, ↠, {𝑡@𝛼}, 𝐴𝑃 , ℓ′)
with ℓ′(𝑞) ≔ ℓ(cterm(𝑞)) if ℓ is the labelling function derived from the Maude
specification. Since its executions are exactly 𝐸(𝛼, 𝑡), we can apply standard
model-checking algorithms on this structure to solve the strategy-controlled
problem, as this is what the strategy-aware model checker does [30]. However,
this semantics does not respect the usual meaning of the Kleene star, as we have
seen in the previous section. Indeed, the procedure through ℳ𝛼,𝑡 will not be
possible with the Kleene star semantics.

4 A new semantics that respects the Kleene star

The Kleene star usually designates all the finite concatenations of words taken
from a given language, and this is the meaning it has in regular and 𝜔-regular
expressions. However, as we have just seen, the Maude strategy 𝛼* can be
informally described as 𝛼∗ ∣ 𝛼𝜔, because it also admits repeating 𝛼 forever.
In effect, the following steps of the example in the previous section (where
𝛽 ≡ uncover ; cover ; cups)

cup(nothing) cup(ball) cup(nothing)@ swap * ; 𝛽
→𝑐 cup(nothing) cup(ball) cup(nothing)@ swap ; swap * ; 𝛽
→𝑠 cup(nothing) cup(nothing) cup(ball)@ swap * ; 𝛽
→𝑐 cup(nothing) cup(nothing) cup(ball)@ swap ; swap * ; 𝛽
→𝑠 cup(nothing) cup(ball) cup(nothing)@ swap * ; 𝛽

can be repeated indefinitely in a loop according to the semantics. For faithfully
representing the Kleene star, we only need to remove those executions of a strat-
egy where an iteration is repeated infinitely many times in a row. We formalize
this with the following definition.
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Rule applications and tests

𝑡 @ rl 𝑠 →𝑠 𝑡′ @ 𝑠 if 𝑡 rewrites to 𝑡′ by rl

𝑡 @ (match 𝑃 s.t. 𝐶) 𝑠 →𝑐 𝑡 @ 𝑠 if 𝑡 matches 𝑃 and satisfies 𝐶

Regular expressions sublanguage

𝑡 @ idle 𝑠 →𝑐 𝑡 @ 𝑠 𝑡 @ (𝛼;𝛽) 𝑠 →𝑐 𝑡 @ 𝛼 𝛽 𝑠

𝑡 @ (𝛼|𝛽) 𝑠 →𝑐 𝑡 @ 𝛼 𝑠 𝑡 @ (𝛼|𝛽) 𝑠 →𝑐 𝑡 @ 𝛽 𝑠

𝑡 @ 𝛼* 𝑠 →𝑐 𝑡 @ 𝑠 𝑡 @ 𝛼* 𝑠 →𝑐 𝑡 @ 𝛼 𝛼* 𝑠

Conditional

𝑡 @ (𝛼 ?𝛽 : 𝛾) 𝑠 →𝑐 𝑡 @ 𝛼 𝛽 𝑠

𝑡 @ (𝛼 ?𝛽 : 𝛾) 𝑠 →𝑐 𝑡 @ 𝛾 𝑠 if 𝑡 @ 𝛼 𝜃↛∗
𝑠,𝑐𝑡′ @ 𝜀

Subterm rewriting

𝑡 @ (matchrew 𝑃 (𝑥1, … , 𝑥𝑛) s.t. 𝐶 by 𝑥1 using 𝛼1, …, 𝑥𝑛 using 𝛼𝑛) 𝑠
→𝑐 subterm(𝜎−{𝑥1,…,𝑥𝑛}(𝑡); 𝑥1 ∶ 𝛼1𝜎, … , 𝑥𝑛 ∶ 𝛼𝑛𝜎) @ 𝑠

𝑞𝑘 →• 𝑞′
𝑘

subterm(𝑡; … , 𝑥𝑘 ∶ 𝑞𝑘, …) @ 𝑠 →• subterm(𝑡; … , 𝑥𝑘 ∶ 𝑞′
𝑘, …) @ 𝑠

• = 𝑠, 𝑐

Strategy calls

𝑡 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝑠 →𝑐 𝛿𝜎𝑠 for any matching definition (𝛿, 𝜎)

Fig. 1. Small-step operational semantics of the strategy language.

Definition 2. Given 𝜋 ∈ 𝒳𝒮𝜔, we say that 𝜋 iterates forever if any of the
following conditions hold:

1. 𝜋𝑘 = 𝑡𝑘 @ 𝑐𝑘 𝛼* 𝑠 for all 𝑘 ∈ ℕ, and there are infinitely many 𝑘 ∈ ℕ such
that 𝑐𝑘 = 𝜀 and 𝑐𝑘+1 = 𝛼.

2. 𝜋𝑘 = subterm(𝑥1 ∶ 𝜌1,𝑘, … , 𝑥𝑛 ∶ 𝜌𝑛,𝑘; 𝑡) for all 𝑘 ∈ ℕ, and 𝜌𝑚 = (𝜌𝑚,𝑘)𝑘∈ℕ
iterates forever for some 1 ≤ 𝑚 ≤ 𝑛.

3. 𝜋𝑘 iterates forever for some 𝑘 ∈ ℕ.

An execution 𝜋 in (𝒳𝒮, →𝑠,𝑐) iterates finitely if it does not iterate forever, and
an execution 𝜋 in (𝒳𝒮, ↠) iterates finitely if its expansion to →𝑠,𝑐 transitions
iterates finitely.

In simpler words, an execution iterates forever if the transition 𝑡@𝛼∗ 𝑠 →𝑐
𝑡@𝛼 𝛼∗ 𝑠 is repeated infinitely many times for the same iteration, either inside a
subterm state or at the top level. Definition 3 introduces the extensional strategy
𝐸𝐾(𝛼, 𝑡) ⊆ 𝐸(𝛼, 𝑡) for a strategy expression 𝛼 that respects the semantics of the
Kleene star.
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Definition 3. Given a strategy expression 𝛼 and a term 𝑡,

𝐸𝐾(𝛼, 𝑡) ≔ cterm(Ex𝜔
𝐾(𝛼, 𝑡))

where Ex𝜔
𝐾(𝛼, 𝑡) ≔ {𝜋 ∈ Ex𝜔(𝛼, 𝑡) ∣ 𝜋 iterates finitely}.

The set 𝐸𝐾(𝛼, 𝑡) is not necessarily closed, so in general it cannot be repre-
sented by an intensional strategy. While the Maude strategy language is Turing-
complete under the original semantics [31, Prop. 3], the number of execution
states is only finite if 𝐸(𝛼, 𝑡) is a closed 𝜔-regular language [31, Prop. 4]. With
the new semantics we can drop the closed adjective from the theorem and rep-
resent any 𝜔-regular language of executions with a finite number of execution
states.

Proposition 1. 1. If the reachable states from 𝑡 @ 𝛼 by →𝑠,𝑐 are finitely many,
then 𝐸𝐾(𝛼, 𝑡) is an 𝜔-regular language.

2. If 𝐿 is an 𝜔-regular language, then there is a strategy expression 𝛽 such that
⋃𝑡∈𝑇Σ

𝐸𝐾(𝛽, 𝑡) = 𝐿 and the reachable states from 𝑡 @ 𝛽 by →𝑠,𝑐 are finitely
many for all 𝑡 ∈ 𝑇Σ.

Proof. [28, Props. 3.7 and 3.8].

However, this strategy cannot be represented in a plain transition system,
because their executions are always closed. In the next section, we discuss how
strategies interpreted under this semantics can be model checked.

5 Model checking fair strategy-controlled models

Standard model-checking algorithms use plain transition systems as models, so
they cannot directly incorporate other restrictions like those imposed by ac-
ceptance conditions on 𝜔-automata. However, the automata-based LTL model-
checking algorithm can handle this kind of restrictions with small changes, since
the model is finally represented as an 𝜔-automaton. Hence, we will represent the
strategy-controlled Maude model directly as an 𝜔-automaton instead of a Kripke
structure.

At first sight, imposing that 𝑡@𝛼∗ 𝑠 →𝑐 𝑡@𝛼𝛼∗ 𝑠 transitions appear finitely
often would be fine, since all iterations will be executed only finitely many times.
However, this is too restrictive because of nonterminating recursive calls, which
may start an iteration infinitely many non-consecutive times. For example, a
recursive strategy mt like mt := rl1 * ; rl2 ; mt must be able to execute
infinitely many times rl1 but only finitely many times between each pair of
applications of rl2, i.e., in each strategy call. This complicates the definition
of the acceptance conditions, and forces us to consider each distinct iteration
separately. In order to identify a strategy and distinguish it from others, we
introduce the following technical definitions.

Definition 4. For any 𝜋 ∈ 𝒳𝒮𝜔 and set of variables 𝑋, we define the following:
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– A position in an execution state is a word 𝑝 ∈ 𝑋∗. The substate of 𝑞
at position 𝑝 is written 𝑞|𝑝 and defined by 𝑞|𝜀 = 𝑞 and (subterm(… , 𝑥 ∶
𝑞, … ; 𝑡) @ 𝑠)|𝑥𝑝 = 𝑞|𝑝.

– A partial context is a word 𝑐 ∈ (Strat∪ (𝑋 → 𝑇Σ) ∪ 𝑋)∗, and it is contained
in an execution state 𝑐 ∈ 𝑞 if 𝑞 = 𝑡 @ 𝑐 for some term 𝑡, or 𝑐 = 𝑐1𝑥𝑐2 for
𝑥 ∈ 𝑋, 𝑞 = subterm(… , 𝑥 ∶ 𝑞′, … ; 𝑡) @ 𝑐2 and 𝑐1 ∈ 𝑞′.

– The position of a partial context pos(𝑐) is defined as pos(𝛼𝑠) = pos(𝑠),
pos(𝜎𝑠) = pos(𝑠), pos(𝑥𝑠) = 𝑥 pos(𝑠), and pos(𝜀) = 𝜀.

The free variables in these sets are quantified existentially.
An iteration will be identified by its partial context 𝛼*𝑐. Two iterations are

considered the same if their partial contexts coincide, and they always take place
in fixed positions of the execution state. For tracking when a given iteration is
started and finished during an execution, we extend the small-step operational
semantics by tagging each control transition →𝐴

𝑐 with the set of iterations 𝐴 in
which it enters or leaves. For most axioms, we simply change 𝑞 →𝑐 𝑞′ to 𝑞 →∅

𝑐 𝑞′,
except for

𝑡@𝛼* 𝑠 →{enter(𝛼∗𝑠)}
𝑐 𝑡@𝛼 𝛼* 𝑠 𝑡@𝛼* 𝑠 →{leave(𝛼∗𝑠)}

𝑐 𝑡@ 𝑠

and
𝑞𝑘 →𝐴

𝑐 𝑞′
𝑘

subterm(𝑡; … , 𝑥𝑘 ∶ 𝑞𝑘, …)@ 𝑠 →
{𝑐𝑥𝑘𝑠 ∣ 𝑐 ∈ 𝐴}
𝑐 subterm(𝑡; … , 𝑥𝑘 ∶ 𝑞′

𝑘, …)@ 𝑠

Despite the tag being a set, a single control step can only enter or leave one itera-
tion, so they are empty or singleton. For the ↠ transition, we write 𝑞 ↠𝐴1∪…∪𝐴𝑛

𝑞′ if it expands to 𝑞 →𝐴1𝑐 𝑞1 →𝐴2𝑐 ⋯ →𝐴𝑛𝑐 𝑞𝑛 →𝑠 𝑞′. The following result follows
by definition of iterating finitely.

Proposition 2. Given an execution 𝜋 of the semantics, 𝜋 iterates finitely iff
for every partial context 𝛼∗𝑐 ∈ 𝜋, enter(𝛼* 𝑐) appears finitely often or leave(𝛼* 𝑐)
appears infinitely often in the transitions of 𝜋.

Proof sketch. By induction, using that the conditions on enter and leave break
item (1) of Definition 2. See [28, Prop. 4.8] for a similar proof.

The previous enter and leave tags can be used to define the acceptance con-
ditions of the Streett automaton (see Section 2). Consider the graph of the
semantics from an execution state 𝑡@𝛼; assuming it is finite, finitely many it-
erations 𝐶 = {𝛼1* 𝑐1, … , 𝛼𝑛* 𝑐𝑛} must have been executed to generate it. We
can define the transition-based Streett automaton (𝒳𝒮, 𝑇Σ/𝐸, Acc, 𝛿, {𝑡@𝛼}, 𝐹)
where

Acc = {enter(𝛼𝑘* 𝑐𝑘), leave(𝛼𝑘* 𝑐𝑘) ∣ 1 ≤ 𝑘 ≤ 𝑛}
𝐹 = {(enter(𝛼𝑘* 𝑐𝑘), leave(𝛼𝑘* 𝑐𝑘)) ∣ 1 ≤ 𝑘 ≤ 𝑛}

𝛿(𝑞, 𝑡) = {{(𝑞′, 𝐴) ∶ 𝑞 ↠𝐴 𝑞′} if cterm(𝑞) = 𝑡
∅ otherwise
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In summary, the Streett automaton is the tagged graph (𝒳𝒮, ↠) of the semantics
with the acceptance conditions of Proposition 2.

Proposition 3. Given a strategy 𝛼 and an initial term 𝑡, the Streett automaton
defined above accepts the language 𝐸𝐾(𝛼, 𝑡).

Proof sketch. By applying Proposition 2 on the runs of the Streett automaton.

For model checking, as usual, we also need to adapt the alphabet of the model
to that of the propositional traces 𝒫(𝐴𝑃 ) in order to compute the product with
the negated LTL property. However, it is enough to define the transition function
as 𝛿′(𝑞, 𝑃 ) = {𝛿(𝑞, 𝑡) ∣ 𝑡 ∈ 𝑇Σ/𝐸, ℓ(𝑡) = 𝑃 } for any 𝑃 ⊆ 𝒫(𝐴𝑃 ).

Streett conditions can be translated into Büchi conditions by paying a blowup
of 𝑛(1 + 𝑘2𝑘) in the worst case where 𝑛 is the number of states of the original
automaton, and 𝑘 the number of Streett pairs [10, §4.3.1]. Moreover, since the
system automaton does no longer have trivial acceptance conditions, intersecting
it with the property automaton is harder than in the usual case, and the number
of states of the product automaton may double. Hence, considering the iteration
under the new semantics is more costly, and simplifying and reducing the number
of Streett pairs is always convenient. One possibility is to ignore iterations that
do not produce cycles, and another one is merging Streett pairs when possible.
For example, since iterations can only be repeated infinitely often because of
tail recursive calls, we can define 𝑡@ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝑠 →{call(𝜎 𝑠)}

𝑐 𝛿𝜎𝑠 and remove
the leave tags. An iteration 𝛼∗𝑠′𝜎𝑠 where 𝑠′ does not contain other call contexts
would be accepted if enter(𝛼∗𝑠′𝜎𝑠) appears finitely often or call(𝜎𝑠) appears
infinitely often. This allows merging Streett pairs of iterations that belong to
the same recursive call if 𝑠′ does not contain a variable (i.e. if they are not in
different substates of a subterm rewriting operator).

5.1 Implementation

The model-checking procedure described in this paper is implemented in Python
as part of the umaudemc tool [29, 30]. Spot [15] is used for building the two
𝜔-automata and checking the emptiness of their product. Since the strategy-
controlled rewrite graph provided by the maude Python library does not trace
the execution of iterations, we generate the semantics graph with an extension
of a built-in implementation of the strategy language included in umaudemc for
a previous work [27].3 This model is then scanned to accumulate the iterations
and identify the Streett pairs. Using the Python API of Spot, a transition-
based Streett automaton is built, and the emptiness of its product with another
automaton for the negated LTL formula is checked. In case the property is not
satisfied, this yields a counterexample run that is presented to the user. This
new model checker is available through the check subcommand of the umaudemc
3 In a previous prototype [28], an executable Maude specification of the small-step

operational semantics in Section 3 was used, and it is still used for the other logics.
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cup(ball) cup(nothing) cup(nothing)

cup(ball) cup(nothing) nothing

cup(nothing) cup(nothing) cup(ball)

swap enter(𝛼*𝑐)

uncover leave(𝛼*𝑐) cover ∅

Fig. 2. Small subgraph of the Kleene-aware model of the running example.

interface, where the flag --kleene-iteration (abbreviated to -k) enables this
interpretation.

Back to the running example, the property □♦ uncovered should be satisfied
under the cups strategy when the iteration is understood as the Kleene star. The
check command shows the expected result with the -k flag.

$ umaudemc check cupsballs.maude initial '[] <> uncovered ' cups -k
The property is satisfied in the initial state
(16 system states, 102 rewrites , 2 Büchi states)

In this case, a single distinct iteration has been found, whose partial context
is swap * uncover ; cover ; cups. The graph of the strategy-controlled model
with the iteration flags can be obtained using the graph command of umaudemc.
A small subgraph of the graph generated by the following command is shown in
Figure 2.

$ umaudemc graph cupsballs.maude initial cups -k

The umaudemc tool supports model checking under the standard semantics of
the Maude strategy language for other logics like CTL and CTL*, using external
tools as backends. This is also possible for this new semantics using an alternative
but related approach.

5.2 An alternative approach for LTL and other logics

Instead of adapting the guts of the model-checking algorithm, we can consider
an alternative approach that discharges the fairness restrictions to the property
logic. In order to do that, we need to push the enter and leave annotations from
the edges to the states as artificial atomic propositions. The number of model
states may increase as a result, since the same original state may be reached
with or without using an iteration. The following proposition proves that this is
generally possible with LTL, and the procedure can be similarly applied to other
logics.

Proposition 4. Given a Maude strategy expression 𝛼, an LTL property 𝜑, and
assuming that the iterations that occur in the reachable states from 𝑡 @ 𝛼 are
numbered from 1 to 𝑛, 𝜋 ⊨ 𝜑 for all 𝜋 ∈ 𝐸𝐾(𝛼, 𝑡) iff ℳ𝐾

𝛼,𝑡 ⊨ 𝜓 → 𝜑 where
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ℳ𝐾
𝛼,𝑡 ≔ (𝒳𝒮 × 𝒫(𝐴𝑃 ′), ↠′, {𝑡 @ 𝛼}, 𝐴𝑃 ∪ 𝐴𝑃 ′, ℓ′)

with 𝐴𝑃 ′ = {𝑒1, 𝑙1, … , 𝑒𝑛, 𝑙𝑛}, 𝑒𝑘 = enter(𝛼𝑘* 𝑐𝑘), 𝑙𝑘 = leave(𝛼𝑘* 𝑐𝑘), ℓ′((𝑞, 𝐴)) =
ℓ(𝑞)∪𝐴, (𝑞, 𝐴) ↠′ (𝑞′, 𝐴′) if 𝑞 ↠𝐴′ 𝑞′, 𝜓 = ⋀𝑛

𝑘=1
𝜓𝑘, and 𝜓𝑘 = ♦□ ¬ 𝑒𝑘 ∨ □♦ 𝑙𝑘.

Using the Maude LTL model checker, the previous property is verified by the
second method, which will actually check (♦□ ¬ 𝑒1 ∨ □♦ 𝑙1) → □♦ uncovered.
$ umaudemc check cups.maude initial '[] <> uncovered '

cups -k --backend maude
The property is satisfied in the initial state
(27 system states, 6384 rewrites , 7 Büchi states)

We have passed --backend maude, instead of the implicit --backend spot when
-k is present, to use the built-in Maude model checker (and so the alternative
approach) instead of Spot.

The finite-iteration semantics can also be respected in CTL* by adding the
restriction 𝜓 as premise to all path quantifiers, i.e. replacing 𝜙 in each A 𝜙 by
𝜓 → 𝜙 and in each E 𝜙 by 𝜓∧𝜙. In particular, CTL properties can be transformed
likewise yielding CTL* properties, and the same effect can be achieved with
the fairness constraints supported by some model checkers [10]. However, the
complexity of the transformed formulae makes it impractical for large examples.
For example, the property A □ E♦ hit says that it is always possible to get the
guess right, and it is translated into A (♦□ ¬e ∨□♦ l → □ (E ((♦□ ¬e ∨□♦ l)∧
♦ hit))) for the following problem.
$ umaudemc check cupsballs.maude initial

'A [] E <> hit' cups -k --backend pymc
The property is satisfied in the initial state
(27 system states, 6846 rewrites , holds in 27/27 states)

While previous executions were instantaneous, this one takes around 4.5 minutes
using pyModelChecking [8] as backend.

Finally, illusionists and conmen sometimes make the ball disappear to obtain
the admiration or the money of the public. Adding this possibility to our rules
and strategies is a small change.

rl [disappear] : cup(ball) => cup(nothing) .
rl [appear] : cup(nothing) => cup(ball) .

sd cups2 := (swap | disappear) * ;
(amatch cup(call) ? idle : fail) ;
uncover ; cover ; appear ; cups2 .

According to the cups2 definition, the ball can be distracted at any time while
swapping the cups with the disappear rule, and the test ensures that this is
actually done. Then the property A □ E♦ hit is no longer satisfied.
$ umaudemc check cupsballs.maude initial

'A [] E <> hit' cups2 -k --backend pymc
The property is not satisfied in the initial state
(15 system states, 9739 rewrites , holds in 0/15 states)
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Another application of this model checker is shown in [28, §6.3], where the
meaning of the iteration ensures that some processes in a processor release it
infinitely often.

6 Related work

The Kleene star semantics for the Maude strategy language presented in this
paper is based on the small-step operational semantics defined in [31]. In that
work, we also study the expressivity of the Maude strategy language and identify
the limitations solved in this paper, and introduce along with [30] the model-
checking approach for strategy-controlled systems that we have taken as a ref-
erence here. Indeed, the implementation of the model checker is integrated into
the umaudemc tool [29] presented in [30].

In the literature, there are several works dedicated to model checking with
fairness constraints [10], even in the context of Maude [2], and to fair models of
computation like fair Kripke structures [20]. NuSMV [9] is a well-known example
of CTL model checker that supports fairness constraints as separate input. In a
wider sense, we are considering constraints involving unquantified nondetermin-
ism, which has always been a relevant topic in the study of concurrency [12, §9].

We also want to mention Meseguer’s Temporal Logic of Rewriting (TLR) [24],
which is introduced along with a strategy language to be used as a dynamic logic
for checking system properties. This language shares most of their operators
with the final Maude strategy language, and namely it includes an iteration
operator 𝛼+, which is available in the Maude strategy language as a synonym of
𝛼 ; 𝛼*. However, the semantics of that strategy language is defined for finite
computations, so the subtlety of the Kleene star is not present.

7 Conclusions

We have proposed a different semantics of the Maude strategy language that
solves the inaccuracy of the Kleene star operator and allows specifying con-
straints on the whole-run behavior of the model, like fairness, as part of the
strategy. Indeed, any 𝜔-regular sublanguage of the executions of the model can
be described with this version of the strategy language, while keeping the number
of execution states finite. Maude specifications controlled by such a strategy can
be model checked using an extension of the umaudemc tool, which relies on the
Spot 𝜔-automata library. However, we have not set it as the default semantics for
the model checker because the verification algorithms are more expensive, and
cannot be applied on the fly (i.e. without generating the full model in advance).
CTL and CTL* properties can also be checked with this tool by translating the
input formula and adding artificial atomic propositions to delimit iterations.

Acknowledgments. Research partially supported by the Spanish AEI through
project ProCode (PID2019-108528RB-C22/AEI/10.13039/501100011033).
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Abstract. Verification of concurrent programs is very tough because
the proof needs to account for a huge number of interleavings of execu-
tion steps of all threads. As concurrent programs are often implemented
in C/C++, which do not support garbage collection, program verifica-
tion needs to consider memory reclamation as well. In this paper, we
report the safe memory verification of two concurrent programs inte-
grated with hazard pointers, a mechanism for safe memory reclamation.
We use CafeOBJ to formally specify the two programs and the properties
of interest. The formal proofs are produced with the assistance of a tool
called IPSG.

Keywords: formal verification · memory reclamation · CafeOBJ.

1 Introduction

Over the years, concurrent programs have been widespread, in part because they
allow to speed up the execution performance when they are executed in parallel,
leveraging multicore hardware. The concurrency, however, makes it notoriously
difficult to implement a concurrent program and to verify it acts as expected,
i.e., all the desired properties are satisfied and there are no undesirable ones
(bugs). This is mainly due to a huge number of interleavings happening between
the execution steps of all threads.

The majority of concurrent programs and concurrent data structures are im-
plemented in unsupported garbage collection languages, like C and C++. That
means programmers are responsible for deallocating unused memory. However,
unlike sequential programs, it is not simple to deallocate a memory block that
is no longer in use by a thread in concurrent programs since that block of mem-
ory may still be accessed by other threads. This raises one more challenge in
reasoning about concurrent programs: safety of memory reclamation, that is, a
no-longer-used memory block by a thread should be safely deallocated with a
guarantee that no other thread accesses such a freed memory block after that.

Some mechanisms to provide safe memory reclamation have been proposed,
such as hazard pointers [14], read-copy-update [13], and epoch-based reclama-
tion [7]. With the hazard pointers-based solution, each thread additionally has
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its own global pointer, which points to the shared object address it is access-
ing. A thread can read but cannot modify the hazard pointers of other threads.
Before deallocating a memory block, a thread needs to check that the hazard
pointers of all other threads do not point to this block.

In this paper, we formally verify the safe memory reclamation of two concur-
rent programs, the Shared counter and Treiber’s stack [24], integrated with the
hazard pointer mechanism. We formally specify the two programs in CafeOBJ [5],
an algebraic specification language that supports writing formal specifications
of a wide variety of systems. CafeOBJ can be also used as an interactive the-
orem proving system, where verifiers are supposed to write the so-called proof
scores [17] and execute them with CafeOBJ. We use a tool called IPSG [23],
which can automate the manual writing task, to produce the proof scores. Pre-
cisely, given a CafeOBJ formal specification, invariant properties formalizing the
desired properties we want to verify, and an auxiliary lemma list, IPSG can auto-
matically produce the proof scores verifying those properties. Note that human
users are in charge of conjecturing the auxiliary lemmas. There are some exist-
ing studies on the verification of the two programs [9,10,18,21], which will be
discussed in Section 6. The strong point of our verification is that the proofs
are based on induction, a standard and pedagogical proof technique, so that
readers easily grasp the basic idea even for those unfamiliar with formal veri-
fication. We use CafeOBJ for both specification and verification tasks so that
the entire verification process can be carried out smoothly. Although we need to
construct many auxiliary lemmas to complete the verification, we have learned
that the lemmas can be divided into some groups as discussed in Section 4.3,
based on which a new lemma can be conjectured. We regard this as an initial
step towards verifying concurrent programs integrated with some advanced safe
memory reclamation mechanisms with CafeOBJ more efficiently.

We make the CafeOBJ formal specifications, proof scores, and other verifica-
tion materials available on the webpage1. In the rest of this section, we elaborate
on the Shared counter program and its fixed version with hazard pointers. Then,
Section 2 provides some necessary preliminaries. Afterward, Sections 3 and 4 de-
scribe how to formally specify the Shared counter program in CafeOBJ and
verification of the safe memory reclamation, respectively. The verification result
of Treiber’s concurrent stack is briefly reported in Section 5. Some closely related
work is mentioned in Section 6, and summarization of our paper is recapitulated
in Section 7.

1.1 Shared counter program

The program is shown in Fig. 1(a). Multiple threads share a global counter
C. Each thread can perform the increment function inc(), which returns the
current value of C and increments it. To do so, the thread first allocates a new
memory block n (line l1), where the updated counter will be stored after the
increment succeeds. The thread then reads the value of C into its local pointer
1 https://github.com/duongtd23/Reclamation-CafeOBJ-verification
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int *C = new int(0);

l0 fun inc() {

l1’ int v, *p, *n;

l1 n = new int;

l2’ do {

l2 p = C;

l3 v = *p;

l4 *n = v+1;

l5 } while(!CAS(&C,p,n));

l6 free(p); // errors occur

l7 return v;

l7’ }

(a) Shared counter.

1
0xf1 0xf2

Cp n!!

1
0xf1 0xf2

Cp n!!
(b) Right after T1 reads the value of
C into its local p.

1
0xf1 0xf2

Cp n!!

1
0xf1 0xf2

Cp n!!

(c) Right after T1 successfully com-
pletes the CAS.

Fig. 1: If the statement at line l6 is disabled, a memory leak will happen. If that
statement is enabled, other errors will occur because of the concurrency.

p (line l2 and Fig. 1(b)), gets the value v of the counter (line l3), and stores
the successor of v into n (line l4). The symbol CAS in line l5 denotes the atomic
primitive compare-and-swap, which takes a pointer and two values. It dereferences
the pointer and compares the dereferenced value with the first given value. If
they are the same, it updates the pointer with the second given value and returns
true. Otherwise, false is just returned. In the CAS in line l5 of Fig. 1(a), because
&C is passed as the first parameter, the dereferenced value, i.e., *(&C), of this
parameter is simplified to C. Therefore, this CAS updates C to n, the address that
stores the updated value of the counter, if C and p point to the same address
(Fig. 1(c)); otherwise, the thread reads the value of C into p again and repeats
the procedure. Fig. 1(b) graphically visualizes the values of p and n of thread
T1 and C right after T1 reads the value of C, i.e., 0xf1, into p. In this state, n is
pointing to the address 0xf2. Fig. 1(c) shows the state right after T1 succeeds
the CAS, in which C is now pointing to the same address as n.

After a successful increment, the thread needs to deallocate the memory
block previously occupied by C (line l6); otherwise, a memory leak will happen.
In the illustration visualized in Fig. 1(c), that memory block is the one with
address 0xf1. However, if the statement free(p) is enabled, an error will occur in
the following scenario. Thread T1 invokes inc(), successfully loading C into its p,
but has not yet attempted to read the value pointed by p. In other words, T1

completes its execution at l2 and stops at l3 (we simply say that T1 is located at
l3). Another thread T2 also performs inc(), successfully completes the CAS and
frees the memory pointed by its local pointer p, i.e., the old C. Now T1 tries to
read the value pointed by its p at line l3, and causes an error due to the address
pointed by p is no longer available as it was deallocated by T2.
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int *C = new int(0);

int *hp[N] = {0};

l0 fun inc() {

l1’ int v, *p, *p2, *n;

l1 n = new int;

l2’ do {

l2 hp[tid] = C;

l3 p = hp[tid];

l4 v = *p;

l5 *n = v+1;

l6 } while(!CAS(&C,p,n));

l7 reclaim(p);

l8 return v;

l8’ }

Set detached[N] = {∅};

f0 fun reclaim(int *p) {

f1 insert(detached[tid],p);

f2 Set inuse = empty;

f3 while(!isEmpty(detached[tid])) {

f4 bool isfree = true;

f5 int *m = pop(detached[tid]);

f6 for(i=0; i<N && isfree; i++) {

f6 if (hp[i] == m && i != tid)

f6 isfree = false; }

f7 if (isfree) free(m);

f7 else insert(inuse, m);

f7’ }

f8 moveAll(detached[tid], inuse);

f8’ }

Fig. 2: Shared counter - A safe memory reclamation version with hazard pointers.

Fig. 2 shows the fixed version of the shared counter program based on hazard
pointers [14]. We suppose that there are N threads involved in this program,
whose identifiers range from 1 to N. Hazard pointers of the N threads are declared
as the global pointer array hp. At line l2, the thread sets its hazard pointer to
the shared counter C. Note that tid denotes the identifier (ID) of the thread
(1 ≤ tid ≤ N). Then, it assigns the hazard pointer to its local pointer p (line l3).
At line l7, instead of immediately deallocating the object p, the thread invokes
function reclaim(p). In this function, p is first inserted into its detached set (line
f1). For each object m in this set, the thread scans the hazard pointers of all
other threads to check that all are different from m. If so, m is safe to deallocate,
otherwise, it is inserted into the set detached again to be reclaimed in the next
invocation.

2 Preliminaries

This section first gives the definitions of Observational Transition System, which
will be used to formalize the programs later. We then introduce CafeOBJ in a
nutshell.

2.1 Observational Transition System

Observational Transition System (OTS) [17] is a kind of state machine used to
formalize systems. Let Υ denote a universal state space. Let Do, Dt, Di

o, and
Di

t be sets of data values, where i serves as indices.

Definition 1. An OTS S is a tuple ⟨O, I, T ⟩ in which:
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– O: A finite set of observation functions (or observers). Each observation
function o : Υ × D1

o × . . . × Dm
o → Do takes one state and m (m ≥ 0)

data values and returns one data value. The equivalence relation (υ1 =S υ2)
between two states υ1 and υ2 is defined as (∀o ∈ O), (∀x1 ∈ D1

o), . . . ,
(∀xm ∈ Dm

o ). (o(υ1, x1, . . . , xm) = o(υ2, x1, . . . , xm)).
– I: The set of initial states, where I ⊆ Υ.
– T : A finite set of transitions. Each transition t : Υ×D1

t × . . .×Dn
t → Υ takes

one state and n (n ≥ 0) data values, and returns one state. Each transition t
has the effective condition c-t : Υ×D1

t×. . .×Dn
t → Bool. If c-t(υ, x1, . . . , xn)

does not hold, then t(υ, x1, . . . , xn) =S υ for x1 ∈ D1
t , . . . , xn ∈ Dn

t .

Given an OTS S, the set of all reachable states RS with respect to (w.r.t.) S
is defined as follows. Each υ ∈ I is reachable w.r.t. S; and t(υ, x1, . . . , xn) is
reachable w.r.t. S if υ ∈ Υ is reachable w.r.t. S for some t ∈ T and xi ∈ Di

t for
i = 1, . . . , n. A predicate p : Υ×D1× . . .×Dl → Bool is called a state predicate.
A state predicate that holds in all reachable states is called an invariant.

2.2 CafeOBJ in a nutshell

CafeOBJ [5] is a programming language equipped with a rich syntax for writing
formal specifications of systems and protocols. Here we provide a brief introduc-
tion to CafeOBJ in the context of how to use it to formally specify the Shared
counter program. The most basic building blocks of CafeOBJ are modules. A
CafeOBJ module starts with the keyword module (abbreviated as mod, and pos-
sibly affixed with * or !, saying that the module has loose semantics or tight
semantics [1], respectively) and may have the following declarations:

– importations of previously defined modules.
– sort declarations: [S1 S2 ...], where S1, S2, . . . are sort names.
– declarations of ordering sorts relation: [S1 < S2] denotes that S1 is a subsort

of S2.
– operator declarations: op f : S1 ... Sn -> S {AT1 ... ATk}, which declares an

operator (or a function symbol) with n arguments of sorts S1, . . . , Sn that
produces an output of sort S. The optionally equational theory attributes AT1,
. . . , ATk may be, for example, assoc (associativity) and comm (commutativity).
An operator without input arguments is called a constant.

– variable declarations: vars V1 V2 ... : S, where V1, V2, . . . are variable names
and S is a sort name.

– unconditional equations: eq T1 = T2 ., where T1 and T2 are terms.
– conditional equations: ceq T1 = T2 if C ., where C is a Boolean term.

For instance, to specify the “execution labels” l1, . . . , l8 and f1, . . . , f8

assigned to the functions inc() and reclaim() in Fig. 2, the following module is
introduced:

mod! LABEL {

[LabelI LabelR < Label]
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ops l1 l2 l3 l4 l5 l6 l7 l8 : -> LabelI {constr} . -- for function inc()

ops f1 f2 f3 f4 f5 f6 f7 f8 : -> LabelR {constr} . -- for function reclaim()

var I : LabelI var R : LabelR

eq (I = R) = false .

... -- omitted some other equations

}

where some other equations are omitted by the symbol .... The attribute constr

denotes that the operator is a constructor of its respective sort.
CafeOBJ provides the user with the open-close environment in the following

form:

open MOD .

...

close

This syntax creates a temporary copy of the existing module MOD and adds new
information into it by introducing new operators, equations, etc. at the place-
holder .... This open-close environment is specifically useful when doing formal
verification [17].

3 CafeOBJ formal specification of Shared counter

We present the CafeOBJ formal specification of the program shown in Fig. 2 in
this section.

Integers. We suppose that integers used in the program are unsigned. We
define the set of unsigned integers as the union of Zero, which contains only 0,
and NzUInt, which contains s(0) (i.e., 1), s(s(0)) (i.e., 2), and so on:

[Zero NzUInt < UInt]

op 0 : -> Zero {constr}

op s : UInt -> NzUInt {constr}

op _+_ : UInt UInt -> UInt {assoc comm prec: 33}

vars I I2 : UInt

eq (0 = s(I)) = false .

eq (s(I) = s(I2)) = (I = I2) .

eq I + 0 = I .

eq I + s(I2) = s(I + I2) .

In the specification of integers, we also define two predicates: less than < and less
than or equal to <=.

The program execution is formalized as an OTS. Transitions of the OTS are
the union of the transitions formalizing the function inc() and those formaliz-
ing the function reclaim(). Each transition specifies how a thread advances one
single step of execution, such as a thread T assigns the value pointed by its local
pointer p to its v. The combination of all transitions and all threads executing
the transitions reflects the concurrent behaviors. Even if the number of threads
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is fixed to N, our specification lets N be an arbitrary number as it is but does not
set it a concrete value.

The sort UInt is used to represent thread IDs as each thread ID is zero or a
natural number. We introduce the sort Sys (standing for system), representing
the state space. To keep track of the execution progress of each thread, we
introduce an observation function, namely pc, with the following signature:

[Sys]

-- state thread ID execution label

op pc : Sys UInt -> Label

The observation function pc takes a state and a thread ID as inputs and returns
the “execution label” where the thread is located at that state. The effective
condition of a transition (i.e., the condition for triggering the transition proceeds)
is usually specified using this observation function. For example, the transition
specifying the assignment of the value pointed by thread T’s pointer p to its
v mentioned above cannot be triggered unless pc(S,T) is l4, where S denotes a
state.

3.1 Function inc

The shared counter and the thread-local variables are formalized as observation
functions. Let S and T be an arbitrary state and a thread ID (i.e., an integer),
respectively. We elaborate on these observation functions in terms of what inputs
they take and what outputs they return as follows:

– counter(S): outputs the shared counter C at state S.
– v(S,T): outputs the value of v of thread T at state S, which is a valid integer

or null.
– p(S,T): outputs the value of p of thread T at state S, which is a valid address

or nil - a null pointer.
– n(S,T): outputs the value of n of thread T at state S.
– hp(S,T): outputs the hazard pointer of thread T at state S.
– *(S,XN): takes a state S and a pointer XN (possibly null) as inputs and outputs

the value pointed by XN at state S.

Recall that, there is also the observation function pc, where pc(S,T) outputs the
“execution label” where thread T is located at state S.

We use a constant - init - to denote arbitrary initial states. The initial states
are defined in terms of equations for the observation functions as follows:

op init : -> Sys {constr}

eq pc(init,T) = l1 .

eq counter(init) = c .

eq *(init,XN) = (if XN = c then 0 else null fi) .

eq v(init,T) = null .

eq p(init,T) = nil .

eq n(init,T) = nil .

eq hp(init,T) = nil .
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Initially, the shared counter is c, which can be arbitrary. Thus, *(init,X) will be
0 (suppose that initially, the value of the counter is 0) if the address X is c. All
other addresses different from c have the value null initially. For each thread T,
its v, p, and n all are null (which is denoted by nil in our CafeOBJ specification).

As mentioned before, each single step of execution in function inc() is spec-
ified by a transition. As an example, we show the definition of the so-called
transition assign-v, which specifies the assignment of *p to v:

op assign-v : Sys UInt -> Sys {constr} .

eq counter(assign-v(S,T)) = counter(S) .

ceq pc(assign-v(S,T), T2) = (if T = T2 then l5 else pc(S,T2) fi)

if c-assign-v(S,T) .

ceq v(assign-v(S,T), T2) = (if T = T2 then *(S,p(S,T)) else v(S,T2) fi)

if c-assign-v(S,T) .

eq p(assign-v(S,T), T2) = p(S,T2) .

eq n(assign-v(S,T), T2) = n(S,T2) .

eq hp(assign-v(S,T), T2) = hp(S,T2) .

eq *(assign-v(S,T), XN) = *(S,XN) .

ceq assign-v(S,T) = S if not c-assign-v(S,T) .

eq c-assign-v(S,T) = (pc(S,T) = l4) .

The effective condition of this transition is defined by c-assign-v(S,T), which
requires that at state S, thread T must be located at l4 (completed loading the
shared counter to its local p and its hazard pointer). If that condition is met, the
transition can be triggered, and then, in the successor state, the thread moves
to l5, and v of T receives the value pointed by p. Otherwise, the state remains
unchanged. The values of counter, p, n, and hp of any thread, and values of any
pointers never change by this transition regardless the effective condition is met
or not.

3.2 Function reclaim

We additionally introduce some more observation functions to keep track of the
detached sets and the thread-local variables inside the function reclaim(). Each
of them takes a state and a thread ID as inputs. For instance, detached(S,T)

denotes the set detached[T] at state S. The other observation functions capturing
the thread-local variables inuse, isfree, m, and i can be understood likewise.

Memory allocation and deallocation. When a thread requests a memory
allocation for its pointer n at line l1, an unused memory block will be allocated
for the thread. Subsequently, that block of memory must never be used for other
allocations. After an object is reclaimed (line f7), the thread releases the as-
sociated memory block, and the memory system should allow a new allocation
request to use the freed memory block. In order to specify those memory al-
location and deallocation operations, we additionally use one more observation
function, namely addrInUse, which captures the set of memory addresses that
have been allocated but not yet released at a given state S. For each allocation
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request, a memory will not be allocated unless its address is not in that set.
This is part of the effective condition of the transition alloc-n, which specifies
the memory allocation for the thread-local pointer n (line l1 of inc()):

eq c-alloc-n(S,T,X) = (pc(S,T) = l1 and 0 < T and T <= N and

not(X \in addrInUse(S))) .

ceq n(alloc-n(S,T,X), T2) = (if T = T2 then X else n(S,T2) fi)

if c-alloc-n(S,T,X) .

When a memory block is released by a thread, it will be removed from the
set, allowing a new allocation request to pick it. This is faithfully reflected by
the transition free, which attempts to release object m:

ceq addrInUse(free(S,T,X)) =

(if isfree(S,T) then delete(X,addrInUse(S)) else addrInUse(S) fi)

if c-free(S,T,X) .

eq c-free(S,T,X) = (pc(S,T) = f7 and m(S,T) = X) .

4 Reclamation verification

This section reports the safe memory reclamation verification results of the
Shared counter program.

4.1 The first property

The first property we want to verify is stated as follows: When a thread T at-
tempts to read the value pointed by its local pointer p to assign it to its local
v, the value must be a valid integer, i.e., a non-null value. We formalize the
property by the following state predicate:

-- for all state S and thread T

eq safety1(S,T) = (pc(S,T) = l4)

implies not(*(S,p(S,T)) = null or p(S,T) = nil) .

Precisely, the predicate says that for any state S and any thread T, when T is
located at l4, its pointer p and the value pointed by its pointer are non-null.
The premise of safety1 may trigger T to proceed with reading the value as it is
the effective condition of the transition assign-v as shown in Section 3. To verify
the property, we prove that safety1 is a valid invariant, i.e., safety1 holds for all
state S and all thread T.

Confirming the error when excluding hazard pointer reclamation. Prior to the
formal verification of safety1, we have temporarily modified our specification,
excluding the safe reclamation based on hazard pointers. Precisely, instead of
invoking the function reclaim(p) at line l7, the temporarily revised the speci-
fication, letting it directly deallocate p. This will expectedly cause an error as
mentioned in Section 1, violating what is stated by safety1. Indeed, we pointed
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out a counterexample of safety1 with respect to the temporarily modified speci-
fication, which can be found on the webpage1. This also confirms that our spec-
ification is executable and eliminates the suspicion that our verification results
are achieved simply because the specification is not executed.

Prove by structural induction. To prove that safety1 is invariant, structural in-
duction [17] on the argument of state (S) is used. We need to prove that (1)
safety1 holds in all initial states with any thread T, and (2) each transition pre-
serves safety1. The open-close environment is helpful for carrying out such a
proof in CafeOBJ. For instance, the proof of (1) is done through the following
open-close environment (or open-close fragment):

open PROP .

op t : -> UInt . -- an arbitrary thread t

red safety1(init,t) . -- asks CafeOBJ to reduce it

close

where the module PROP contains the complete specification of the program as well
as the predicate safety1, and the red (standing for reduce) command reduces the
given term. If the open-close fragment is executed with CafeOBJ, CafeOBJ will
return true, indicating that (1) is proven. A collection of open-close fragments
like the above forms the so-called proof scores [17] of safety1.

To complete (2), proof must be given for each transition. With the transition
assign-v shown previously, we prove that if safety1 holds in state s, it holds in the
successor states assign-v(s,t2) for all t2. The following is the proof attempt of this
induction case where the most typical induction hypothesis instance safety1(s,t)

is used:

open PROP .

op s : -> Sys . -- an arbitrary state

ops t t2 : -> UInt . -- arbitrary threads t and t2

red safety1(s,t) implies safety1(assign-v(s,t2),t) . -- returns a complex term

close

If we execute this open-close fragment with CafeOBJ, the obtained result is
neither true nor false, but a composite term. It cannot be reduced because the
environment lacks information about t and t2 at state s, for example, whether or
not pc(s,t2) is l4. To overcome this situation, typically, case splitting by means
of equations is used to split the case into multiple sub-cases and solve each of
them. A lemma may be used to solve a case as well. We do not describe this in
more detail here, instead, we kindly ask readers to check [17,23].

IPSG. Our verification is assisted by IPSG [23,22], a tool that can automate the
proof score writing process. Precisely, providing a CafeOBJ formal specification,
state predicates formalizing the properties of interest together with an auxiliary
lemma collection, IPSG can generate the proof scores verifying those properties.

1 https://github.com/duongtd23/Reclamation-CafeOBJ-verification
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The tool was implemented by using CafeInMaude [20], a CafeOBJ interpreter
implemented in Maude [3,6]. How the tool operates can be briefly summarized as
follows. Starting from a collection of open-close fragments, where each of them
does not contain any equation and the most typical induction hypothesis instance
is used if it is an induction case, IPSG uses Maude metalevel functionalities [3,
Chapter 14] to reduce the goal to a term x. If x is neither true nor false, a sub-
term of x, let’s say x′, will be chosen by IPSG, and the current case associated
with that open-close fragment will be split into two sub-cases: one when x′ holds
and the other when it does not. The same procedure is applied for each sub-
case created until either true or false is returned for the reduction. When false
is returned, IPSG tries to discharge the associated case by finding a suitable
lemma from the lemma collection provided by human users.

We use IPSG to produce the proof attempt of the property under verification,
such as safety1. In such a proof attempt, either true or false is returned for each
sub-case. We are supposed to conjecture additional lemmas to discharge the sub-
cases in which false is returned. The property and the conjectured lemmas are
fed into IPSG, asking it to produce the proof again for the property as well as
the proof attempt for those new lemmas. The second proof attempt produced
may require us to conjecture some other lemmas. The process is repeated until
the final proof contains no sub-case in which false is returned. We believe that
using the tool is very helpful for our verification as we only need to concentrate
on the creative task - lemma conjecture. The auxiliary lemmas used to complete
our verification will be discussed in Section 4.3.

4.2 The second property

The second property we want to verify is stated as follows: When a thread T

is ready to deallocate the memory block occupied by its local m (at line f7 of
function reclaim()), the shared counter does not occupy that memory block.
This property is formalized by the following predicate:
-- for all state S, thread T, and memory address X

eq safety2(S,T,X) = (m(S,T) = X and pc(S,T) = f7 and isfree(S,T))

implies not(counter(S) = X) .

The property is directly inferred from the following lemma - a stronger predicate
than safety2:
-- for all state S, thread T, and memory address X

eq p6(S,T,X) = (m(S,T) = X) implies not(counter(S) = X) .

This lemma states that if m of some thread T is X, then the shared counter must
differ from X. To prove this lemma, induction is used with the employment of
IPSG.

4.3 Lemmas

Among the lemmas used for the verification, half belong to the function reclaim()

and the other half belong to the function inc(). Each of these two lemma groups
can be further divided into three sub-groups.
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Lemmas for the set of allocated memories. We define and use some lemmas
related to the observation function addrInUse:

-- for all state S, thread T, and memory address X

eq addruse-lm1(S,X) = (counter(S) = X) implies X \in addrInUse(S) .

eq rc-addr-lm1(S,T,X) = (m(S,T) = X) implies X \in addrInUse(S) .

eq rc-addr-lm2(S,T,X) = (X \in detached(S,T) or X \in inuse(S,T))

implies X \in addrInUse(S) .

Those lemmas in general state that if a memory block X is pointed by the shared
counter or some thread-local variable, then X exists in the set of allocated memo-
ries. For example, what is stated by addruse-lm1 is straightforward to understand
and conjecture: the memory occupied by the shared counter must be in the set
of allocated memories.

Lemmas for the sets detached and inuse. Lemmas related to the sets
detached and inuse are classified into this set. They generally state that if a
memory block X is pointed by the shared counter or the thread-local variable n

or m, then X does not exist in the T’s sets detached and inuse; or in some case X

does not exist in the two sets of other threads. The following are two lemmas
that are classified into this set:

-- for all state S, threads T and T2, and memory address X

eq detached-lm1(S,T,X) = (counter(S) = X or n(S,T) = X)

implies not(X \in detached(S,T) or X \in inuse(S,T)) .

eq rc-detach-lm1(S,T,T2,X) = (m(S,T) = X and not(T = T2))

implies not(X \in detached(S,T2) or X \in inuse(S,T2)) .

Other lemmas. There are some trivial lemmas, such as the following:

eq rc-lm5(S,T,X) = not(T <= N) implies not(hp(S,T) = X) .

It is trivial due to we only consider N threads with IDs ranging from 1 to N.
In other words, our formal specification never touches a thread and its haz-
ard pointer whose ID is greater than N. Despite its triviality, its proof must be
made as we are conducting formal verification. Some other lemmas require a
well enough understanding of the program and relative creativity to conjecture
them, otherwise, we may be stuck to prove them.

5 Verification of Treiber’s stack

We also formally verify the safe memory reclamation of Treiber’s stack [24]
integrated with the hazard pointer mechanism. This is a concurrent stack imple-
mented by using a linked list, where the head of the list is the top of the stack.
Similar to the original Shared counter program, the algorithm is also subjected
to the error caused by a thread accessing a memory block that was deallocated
by another thread to avoid a memory leak.
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struct node {

int val;

node *next; };

node *top = null;

l0 fun pop() {

l1’ node *p, *n; int v;

l1’ while(true) {

l1 hp[tid] = top;

l2 p = hp[tid];

l3 if (p == null) return null;

l4 v = p.val;

l5 n = p.next;

l6 if CAS(&top,p,n) {

l7 reclaim(p);

l7 return v;

l7’ }

l7’ }

l7’ }

l0 fun push(int v) {

l8’ node *nd, *tp;

l8 nd = new(node);

l9 nd.val = v;

l10’ do {

l10 tp = top;

l11 nd.next = tp;

l12 } while(!CAS(&top,tp,nd));

l12’ }

Fig. 3: Treiber stack [24] with hazard pointers. The function reclaim(int *p) is
shown in Fig. 2.

Fig. 3 depicts the fixed version of the stack using hazard pointers, in which
it reuses the function reclaim(int *p) as shown in Fig. 2. The structure node

consists of an integer value and a pointer next pointing to the next element of
the linked list (or the next element in the stack). The global pointer top, which is
the head of the linked list and the top of the stack, is shared by all threads. In the
function pop(), without a valid reclamation mechanism, errors may occur when
a thread attempts to read the value and the next pointer of its local pointer p at
lines l4 and l5. This is similar to what happens with the original Shared counter
program as another thread may have already deallocated the top through its
local p. If the CAS at line l6 fails, the thread starts the pop procedure again.

We provide modular specifications for Treiber’s stack and the Shared counter
program. Both specifications use several common parts, such as, the specification
for the function reclaim(), the specifications of unsigned integers as well as the
execution labels - module LABEL.

We successfully verify the following properties:

1. When a thread T attempts to read the value of its local pointer p to assign
it to its local v and n, p must point to a non-null address and the value must
be a valid integer. This is the counterpart of the first property we considered
in the Shared counter case study.

2. When a thread T is ready to deallocate the memory block occupied by its
local m (at line f7 of function reclaim()), no element of the stack occupies that
memory block. This also implies that the top of the stack does not occupy
the memory block being deallocated.
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The verifications of the two programs are also modular in the sense that we
could reuse the lemmas for the function reclaim() as in the Shared counter pro-
gram. As Treiber’s stack is more complicated than the Shared counter program,
the formal verification of the stack is relatively more complicated than that of
the Shared counter program.

6 Related work

Gotsman et al. [9] verified that memory reclamation of the shared counter pro-
gram integrated with hazard pointers [14], read-copy-update [13], and epoch-
based reclamation [7] are safe. The proofs were constructed based on their pro-
posed key concept called grace period, i.e., the period of time during which a
thread can access certain shared memory blocks without fear that they get deal-
located by other threads. However, their proofs were not mechanized by any tools
or proof assistants. IPSG assisted our verification by producing the proof scores,
which can be executed with CafeOBJ (or CafeInMaude) to confirm the prop-
erties under verification. Compared to manual proofs, computer-verified proofs
are preferable in the sense that human mistakes lurking in the proofs can be
avoided. Since our proof scores can be checked by CafeOBJ or CafeInMaude
independently of IPSG, it eliminates the suspicion that bugs might happen in
the proof generation by IPSG.

The integration of the hazard pointer mechanism into Treiber’s stack was
verified in [10,18,21]. Jung et al. [10] used the Iris framework [11] and Coq
proof assistant [12] to verify safe memory reclamation of several concurrent data
structures integrated with the hazard pointer and read-copy-update mechanisms.
Their verification is more advanced than ours in the aspect that they successfully
showed that their verification method is applicable to many case studies. Readers
are supposed to have enough knowledge of the concurrent separation logic [2] and
its set of proof rules to understand their verification. Whereas, our verification
relied on induction, a standard and pedagogical proof technique that lets readers
easily grasp the basic idea even for those unfamiliar with formal verification.

Parkinson et al. [18] also verified Treiber’s stack integrated with hazard point-
ers in the concurrent separation logic [2]. Their verification approach relied on
history variables (or ghost variables) - those are additionally introduced to keep
track of the status of a memory block (protection and reclamation) and to record
events in the past. However, the proof was achieved under the assumption that a
no-longer-used memory block previously occupied by the top of the stack could
never be picked up by other memory allocation requests. Recall that our specifi-
cations allow this scenario, as by the transition free, the memory block pointed
by pointer m is removed from the set addrInUse in the successor state. Further-
more, their verification was not mechanized by any tools or proof assistants.

The integration of the hazard pointer mechanism into Treiber’s stack was also
verified by Fu et al. [8]. They proposed to extend the rely-guarantee reasoning
by introducing past tense temporal operators in the assertion language of the
rely-guarantee reasoning so that they no longer need to use history variables to
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record events in the past as in the work by Parkinson et al. [18]. The verification
is done by constructing invariants on the history of execution traces. Similar to
the work by Parkinson et al. [18], their verification was not mechanized by any
tools or proof assistants.

Also developed on top of CafeInMaude, CafeInMaude Proof Generator &
Fixer-upper (CiMPG+F) [19] can produce the proof scripts, which can be then
fed into CiMPA - the CafeInMaude Proof Assistant, verifying the invariant prop-
erties of interest. CiMPG+F and IPSG complement each other as the two tools
produce different kinds of formal proofs accepted by CafeInMaude. However,
lemma conjecture tends to be completed more straightforwardly through a proof
score than the corresponding proof script because we can explicitly observe the
equations characterizing a sub-case in the proof score (more details were dis-
cussed in [23,22]). The Maude Interactive Theorem Prover (ITP) [4] allowed
users to prove invariant properties w.r.t. Maude specifications. Although ITP
offers the auto command to automatically split a goal into multiple subgoals,
it is unclear how much automation this command can do. IPSG can automati-
cally conduct case splitting such that true or false is returned for each sub-case
generated. We believe that it is very useful as the user conducting verification
only needs to concentrate on the lemma conjecture task. Recall again that IPSG
produces proof scores, which can be then checked by CafeOBJ/CafeInMaude
independently of IPSG.

7 Conclusion

We have formally verified the safe memory reclamation of two concurrent pro-
grams, in which the hazard pointer approach is used for memory reclamation.
We do not claim that we are the first who verify these two programs. Instead,
we verify the safe memory reclamation algorithm in concurrent programs us-
ing an alternative technique, that is, by using CafeOBJ and proof scores. The
strong point of this verification technique is that the verification follows the same
language as the specification task, which makes the entire verification process
undergo smoothly, and the verification is based on induction, a standard and
pedagogical proof technique that lets readers easily grasp the basic idea even for
those unfamiliar with formal verification.

The challenge and also the main weakness of our verification is that many
additional lemmas need to be conjectured and used to make the proofs succeed,
some of which are trivial like rc-lm5. Nevertheless, through the two verifications,
we have learned that in each case study (1) the lemmas for the function reclaim()

can be separated and reused; and (2) the lemmas can be divided into three
groups, based on which verifier can conjecture lemmas to verify a new case
study. We plan to verify the integration of concurrent programs/data structures
with some recently advanced mechanisms for safe memory reclamation, such as
[16,15], which have not yet been formally verified. With such future work, we
aim to complete the verification more efficiently by increasing the modularity
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and reducing the number of auxiliary lemmas. What has been done in this work
is regarded as the initial step towards that goal.
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Abstract. This paper presents the hrewrite library, that implements
a term rewriting engine used as a backend for the generation of code
assemblies. This library is implemented in C++ with a Python API, and
accepts regular expression order-sorted term signatures and conditional
rewriting rules. This paper describes the motivations of the library, its
design, and illustrates it with some basic usage and with a discussion of
its role as code assembly generation backend.

1 Introduction

The problem of automatically assembling code components to obtain a correct,
complex and e�cient behavior has received a lot of attention over the past
decades, e.g., in [1, 12, 16, 4, 20]. In many of these works, the code components
are packages and the necessity to assemble them comes from a name-based no-
tion of dependency: each component C is tagged with a Boolean formula over
component names that states which other components must be present (or not)
for C to be functional. As discussed in [1, 20], such problems can be managed
by a SAT solver. In [12, 16], the dependencies are modeled with numerical con-
straints, and can be managed by a minizinc or SMT solver.

Recently a new instance of the automatic code assembly problem was inves-
tigated in [21], where code components are functions with multiple inputs and
outputs and these functions must be combined in such a way as to produce a
value desired by the end user. Consequently, the notion of dependency in this
new instance is based on the speci�cation of values, and none of the approaches
described previously can be reused. In [21], the authors describe a solution for
this new instance, based on a new term rewriting engine: the current paper
complements [21] by presenting this new engine, called hrewrite1. This engine is
implemented as a C++ pure-header library with a Python interface, and includes
the following features: i) it implements rewriting over unranked trees described
with regular expression order-sorted term signatures, as discussed in [18]; ii) it
implements conditional rewriting rules where guards are arbitrary Python func-
tions; iii) it allows for terms to store any Python objects; and iv) it ensures that
no term is duplicated in memory (consequently a term is a DAG in hrewrite).

⋆ This work was partially supported by the SONICE project, granted by the French
Directorate General for Civil Aviation (DGAC).

1 the hrewrite library is available at https://github.com/onera/hrewrite
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The outline of the paper is as follows: Section 2 describes the motivations
for the new rewriting engine and its features; Section 3 describes the overall
architecture of the library; Section 4 presents the Python API of the library via
a small representative set of examples; Section 5 brie�y discusses the usage of
the library as a backend for automatic code assembly; Section 6 discusses the
related work; and Section 7 concludes the paper.

2 Motivations

Likewise to similar problems, to solve the dependency analysis problem raised
in [21], we need to answer two main questions: how to specify the inputs and
outputs of every function; and how to match them in order to build a correct
assembly. We structure this section in three parts: i) we discuss the unranked tree
nature of the values exchanged between the functions; ii) we discuss the need to
abstract from these values to express the dependencies of some functions; and
iii) we brie�y motivate why hrewrite generates a DAG and not a tree.

The Values. The application domain of the functions considered in [21] is Com-
putational Fluid Dynamics, i.e., the functions compute physical values (like pres-
sure or speed) of a �uid evolving in a 3D mesh. The main standard to describe
such meshes and the value they carry is called CGNS [19], and like a DTD �le for
XML [8, 25], it corresponds to an unranked tree language. Moreover, the CGNS
standard splits a mesh in a graph of zones (that model the volume in which the
�uid evolves) and borders (that model the borders of the mesh, e.g., the walls, or
the places where the �uid is injected/extracted). This standard has thus three
main consequences on how to specify functions.

1. Most functions are generic since they can compute a physical value on any
zone of the mesh. This implies that our speci�cations must include a notion
of variable.

2. While most values hosted on a zone can be described with a simple name
(like �pressure�), some functions manipulate subtrees of a CGNS �le. Conse-
quently, our speci�cations must include a notion of unranked tree language.

3. Moreover, CGNS trees can carry base values (like strings or numpy tensors)
that are central for the con�guration of the functions, before their execution.
Hence, our speci�cations must be able to describe these values.

It is thus clear that: the unranked tree model as described in [18], extended with
arbitrary Python values (to e�ciently store CGNS-carried data), is a good �t
to specify values in [21]; and pattern matching (extended with equality testing
between Python values) is enough to perform the dependency analysis.

The Abstractions. To illustrate the kind of abstraction needed to express some of
the functions' dependencies, let us consider the borders of a mesh. These borders
carry physical properties to describe how they a�ect the �uid �ow, and so many
functions computing a value on a zone need to access the borders linked to that
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zone. As these functions are generic (they can be applied on any zones), we need
a way to: i) express the set of borders linked to a variable; and ii) once the value
of that variable is known, translate it into the actual set of borders.

For instance, if we consider the function convectiveFlux computing the
convective �ow, we need to be able to express its dependencies as follows (using
the syntax described in [21]):

1 vars Z : zone

2 fun convectiveFluxBC:

3 inputs

4 data(Primitive, Z)

5 data(Conservative, bordersOfZone(Z))

6 outputs data(Fxc, Z)

In this speci�cation, Z is a variable of zone; data is a constructor putting a
value on a speci�c element of the mesh; Primitive and Conservative are val-
ues (which can exist on zones and on borders); bordersOfZone is a constructor
corresponding to getting the list of borders of the zone in parameter; and Fxc is
the convective �ow computed by the operator. Note that following this speci�-
cation, the number of inputs of the function convectiveFlux is at least one but
has no upper bound: data(Primitive, bordersOfZone(Z)) corresponds to one
input per border of Z, and the number of borders of a zone is unknown when
specifying a function. Consequently, in addition to the mechanism to translate
bordersOfZone(Z) into the list of borders of Z when it is known, we also need
a mechanism to distribute the data constructor over that list.

To be able to easily express these mechanisms (and few others of similar
nature), we extended the pattern matching previously discussed into rewriting,
with conditional rewriting rules where the guards can be any user-de�ned func-
tion: to manage the bordersOfZone constructor, we automatically generate from
a CGNS �le the rewriting rules encoding its graph; to manage the distribution of
the data constructor, we write few rewriting rules; and we use the user-de�ned
guards to fetch useful information from the rest of the CFD program.

Shared Data. While a rewriting engine is useful to put a function's speci�cation
into normal form and to match inputs with outputs, it can also be used (as
described in [21]) to perform the dependency analysis, thus generating the com-
plete code assembly as a term. In practice, we observed that many intermediate
values in the code assembly are used by multiple functions (3 in average), and
so storing a term as a DAG instead of a tree avoids a lot of replication: we had
an example of code assembly consisting of 384 nodes that would correspond to
a tree of 150983896 nodes.

3 Architecture of the Library

The core of hrewrite is implemented as a pure C++17 header generic library,
which is then instantiated and wrapped to provide the Python API. Figure 1
presents the overall architecture of hrewrite, which is structured in at least 6
modules implemented in C++, plus one Python module.
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Fig. 1. Structure of the hrewrite library

The Sorts Module. This module provides the API to declare new sorts and the
subsort relation. It is also responsible for storing this information and can be
queried, for instance to ensure that the parameters of a term constructor are
valid.

The Parsing Module. This module provides all the functionalities necessary to
manage regular expressions. First, it translates regular expressions into objects
(e.g., non-deterministic �nite automata) capable to recognise words of the cor-
responding language. Note that the generated objects are linked to the Sorts

module so the subsort relation is taken in account during world recognition.
Moreover, these objects are used as basis for the implementation of the pattern
matching which will be discussed a bit later.

The Theories Modules. Each of these modules correspond to a possible im-
plementation of a term node, and can be freely combined to enable di�erent
functionalities in terms. For instance, in the core implementation of hrewrite,
4 theory modules have been implemented: one for variables; one for structured
terms; one for terms with no subterms; and one templated module for leaf term
nodes holding a value of a user-given type.

The Constructor API Module. This module provides the API to declare new
constructors for any of the included theories (except for the variable theory). It
is also responsible for storing these constructors and their signatures, which is
used to ensure that a user-de�ned term is well constructed. This module does
not fully implement the functionalities described in [18], as it allows for a term
constructor to be declared at most once: i.e., a term constructor cannot be
overloaded and can only have one sort.

The Term API Module. This module provides several functionalities related to
terms. First, it has the API to construct new terms: either variables, or using
the constructors declared in the Constructor API Module. It also provide all
the base lookup functionalities on terms, like checking if a term is a variable,
accessing the subterm of a structured term or accessing the value of a value-
holding term. Moreover, this module implements the pattern matching on terms.
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This functionality is implemented with a simple backtracking algorithm, which is
motivated by the fact that multiple matches are possible for a given pattern, and
the user-de�ned guard may choose any of the possible matches. Currently, only
linear patterns are supported. Finally, this module can also store the created
terms to ensure that a term is created at most once in memory.

The Rewriting API Module. This module provides the API for registering a set
of rewriting rules and applying it on a ground term. The rewriting rules are
stored in a simple mapping that gives for every term constructor c the list of
rewriting rules whose pattern has c as root constructor, which allows for rela-
tively quick rewriting rule lookup. Both the innermost and outermost rewriting
strategies have been implemented. The innermost strategy traverses the input
term starting by its leaves, and for every encountered subterm t with root con-
structor c, it iterates over the rewriting rules in the c list to check if one can be
applied. If several rewriting rules matches t, then the �rst one will be applied.
The outermost strategy traverses the input term in both direction, �rst from its
root to its leaves, and then back, and for each encountered subterm, it checks if
it can be rewritten the same way as the innermost strategy. Finally, this module
can also store a mapping giving the normal form of every rewritten term, which
can be useful when the same term is rewritten several times.

The Python API Module. As previously described, this module �rst instantiates
the generic functionalities of hrewrite, and wraps them in a user-friendly Python
API. The instantiation includes all the theories implemented in the hrewrite

library, with the templated theory for value instantiated for Python objects.
Moreover, to ensure that our terms are DAGs with no possible duplication of
nodes encoding a computation, the optional storage of the Term API module
has been selected; we also selected the optional storage of the normal forms of
terms to avoid rewriting multiple times the same term, which happens often in
our usecase. Indeed, as discussed in Section 2 in our code assemblies, each data
is used 3 times in average, and without the normal form storage, each of these
usages triggers a new rewriting process.

4 The Python API

In this section, we present a simple example illustrating the Python API of
hrewrite. To use our library, we �rst need to import it:

1 import hrewrite as hrw

Our example is structured as follows: we �rst construct a simple algebra for
natural numbers; then we illustrate the value-carrying terms by rewriting terms
into Python values; and conclude with a simple algebra for lists.

Algebra for Natural Numbers. We start by declaring three sorts (one for the
zero value, one for the non-zero values, and one for all natural integers) with the
corresponding subsort relation:
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1 hrw.sorts("Zero", "NzNat", "Nat")

2 hrw.subsort("Zero", "Nat")

3 hrw.subsort("NzNat", "Nat")

Next, we declare the following term constructors:

1 zero = hrw.constructor("zero", hrw.free() >> "Zero")

2 s = hrw.constructor("s", hrw.free("Nat") >> "NzNat")

Line 1 declares the constructor named "zero", that takes no parameters and
is of the sort "Zero", and stores it in the variable zero2. Line 2 declares the
constructor named "s", that takes one parameter of sort "Nat" and returns a
term of sort "NzNat", and stores it in the variable s. Terms are constructed and
printed as follows:

1 two = s(s(zero))

2 print(two)

Finally, let us declare the plus function and its semantics as rewriting rules:

1 plus = hrw.constructor("plus", hrw.free("Nat Nat") >> "Nat")

2 alpha , beta = hrw.vars("Nat", "Nat")

3 rw_eng = hrw.rw_engine_cls ()

4 rw_eng.add(plus(zero , alpha), alpha)

5 rw_eng.add(plus(s(alpha), beta), plus(alpha , s(beta)))

Line 1 declares the constructor named "plus", that takes two parameters of sort
"Nat" and returns a term of sort "Nat", and stores it in the variable plus. Line 2
declares the variables alpha and beta, both of sort "Nat". Line 3 declares a new
rewiting context rw_eng, and Lines 4 and 5 introduce the standard rewriting
rules for the semantics of plus. Rewriting the term 2+3 is done as follows:

1 five = rw_eng.rewrite(plus(two , s(two)))

Natural Numbers to Python. To store Python number in our terms, we �rst
create a new sort (with the corresponding subsort relation) and a new constructor
for this container:

1 hrw.sort("Val")

2 hrw.subsort("Val", "Nat")

3 val = hrw.constructor("val", hrw.lit() >> "Val")

In line 3, hrw.lit() states that the term constructor val holds a Python value.
We model the conversion from pure term naturals to Python naturals as follows:

1 rw_eng.add(zero , val (0))

2 valpha , vbeta = hrw.vars("Val", "Val")

3 def guard_s(rw_eng , substitution):

4 t = hrw.instantiate(valpha , substitution)

5 substitution.add(vbeta , val(hrw.get_value(t) + 1))

6 return True

7 rw_eng.add(s(valpha), vbeta , guard_s)

2 The name of the hrw.free function comes from the free theory in Maude, that
implements basic structured terms
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Line 1 simply states that the term zero corresponds to 0. Lines 2 to 7 encode
the semantics of s: the increment of the integer value is performed within the
guard guard_s. Line 7 states that the successor of a Python value is rewritten to
a variable vbeta, whose image in the matching substitution is set in guard_s. A
guard (in line 3) is a Python function that takes two parameters: the rewriting
engine executing the guard (in case some rewriting must be performed in the
guard), and the substitution computed by the pattern matching. In line 4, the
guard extracts the image t of valpha from the substitution, and in line 5, it sets
the value of vbeta to be a val containing the value contained in t plus 1. Finally,
in line 6, the function returns True to signal the rewriting engine that the guard
has been validated.

Lists of Natural Numbers. Since hrewrite manages unranked trees, the construc-
tor for list of natural numbers can be declared as follows:

1 hrw.sorts("list")

2 List = hrw.constructor("List", hrw.free("Nat*") >> "list")

As indicated by the star in "Nat*" in line 2, the List constructor can take any
number of natural numbers in parameter. The concatenation of two lists is also
relatively simple to express:

1 concat = hrw.constructor(

2 "concat", hrw.free("list list") >> "list")

3 vl1 , vl2 = hrw.vars("Nat*", "Nat*")

4 rw_eng.add(concat(List(vl1), List(vl2)), List(vl1 , vl2))

The rewriting rule in line 4 simply puts the content of the �rst list in vl1, the
content of the second list in vl2, and then puts these two contents in sequence
in the resulting list.

5 Case Study

In [21], hrewrite is used to automatically generate 597 code assemblies repre-
sentative of computations in CFD. In this section, we �rst provide a simpli�ed
example illustrating this automatic generation, and then gives an initial bench-
mark on the speed of the hrewrite library.

5.1 Example of Code Assembly

For simplicity, we will not present the speci�cities of CGNS trees, and use a
Maude-like DSL to illustrate our signature and rewriting rules. Our example
is structured as follows: i) we introduce the core signature that models data
and function applications, together with few rewriting rules that, as discussed
in Section 2, encode the distribution of data over lists of borders; ii) we give the
speci�cation of several functions that can be used in our assembly; iii) we then
present the rewriting rules that are automatically generated from this speci�ca-
tion and from an example mesh; and iv) we apply the rewriting rules on a term
corresponding to a data that must be computed, and present the resulting DAG.
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1 sort field zone border borderType .
2 sort value data functionID appStatus .
3 subsort zone < field .
4 subsort border < field .
5

6 op data(_,_): value field -> data .
7 op appNone(_): data -> appStatus .
8 op appDone(_,_,_):
9 data functionID appStatus* -> appStatus .

10 op dataList(_): data* -> data .
11 op fieldList(_): field* -> field .
12 op zoneOfBorder(_): border -> field .
13 op bordersOfZone(_): zone -> field .
14 op getBorderType(_): border -> borderType .
15 op wall: -> borderType .
16 op inputFlow: -> borderType .
17 op outputFlow: -> borderType .

18 vars V: value, F: field, Fs: field*, D: data, Ds: data* .
19

20 rl data(V, fieldList(F, Fs)) => dataList(data(V, F), data(V, fieldList(Fs))) .
21 rl data(V, fieldList()) => dataList() .
22 rl appNone(dataList(D, Ds)) => appList(appNone(D), appNone(dataList(Ds))) .
23 rl appNone(dataList()) => appList() .

Fig. 2. A Simple Signature used for Automatic Function Assembly

Signature and Distribution. Figure 2 �rst presents the signature structuring
our function assembly (Lines 1 to 17) and the rewriting rules for distribution
(Lines 18 to 23). The field sort corresponds to elements of a mesh, which can
be either a zone (corresponding to a �nite volume) or a border (corresponding
to a border of a zone). A border can be of several types. An example of such a
mesh is presented in Figure 3, that contains only one zone, with four borders.
Two of these borders are walls blocking the �ow of the �uid; the border on the
left injects more �uid in the zone; and the border on the right allows for the
�uid to escape. The data manipulated by our functions are values hosted on
the di�erent elements of the mesh: this is modeled with the data constructor
that takes in parameter a value and a �eld. The appNone constructor states
that the data in parameter is not computed by any function, while the appDone
constructor states that the data is computed by a function (of sort FunctionID)
applied on the parameters in the appStatus list.

Moreover, we have a container for lists of data and another one for lists of
�elds; zoneOfBorder models the function getting the zone attached to a border;
bordersOfZone models the function getting the list of borders attached to a
zone; getBorderType models the function getting the type of a border; and
wall, inputFlow and outputFlow are the three border types considered in our
example.

Finally, our rewriting rules encodes two distributions: one for the data con-
structor over its field parameter, and another one for the appNone constructor
over its data parameter.

border1

border0

border2

border3

zone1

Legend

: wall

: zone

: input flow

: output flow

Fig. 3. A Mesh example, with one zone and four borders
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1 vars Z: zone, B: border
2

3 fun primitive:
4 inputs data(Conservative, Z)
5 outputs data(Primitive, Z)
6 fun convectiveFlux:
7 inputs data(Primitive, Z)
8 outputs data(Fxc, Z)
9 fun convectiveFluxBC:

10 inputs
11 data(Primitive, Z)
12 data(Conservative, bordersOfZone(Z))
13 outputs data(FxcBC, Z)
14

15 fun fluxBalance:
16 inputs data(Fxc, Z) data(FxcBC, Z)
17 outputs data(Balance, Z)

18 fun explicitIncrement:
19 inputs data(Balance, Z)
20 outputs data(Rhs, Z)
21

22 fun inlet:
23 inputs data(Conservative, zoneOfBorder(B))
24 outputs data(Conservative, B)
25 guard bc_type(B) == inputFlow
26 fun outpres:
27 inputs data(Conservative, zoneOfBorder(B))
28 outputs data(Conservative, B)
29 guard bc_type(B) == outputFlow
30 fun wall:
31 inputs data(Conservative, zoneOfBorder(B))
32 outputs data(Conservative, B)
33 guard bc_type(B) == wall

Fig. 4. Function Speci�cations

Function Speci�cations. Figure 4 speci�es the signature (using a DSL similar
to [21]) of the di�erent functions that can be used to construct our assembly.
Inputs and outputs are speci�ed with terms3 that can contain variables: here,
the variables Z of sort zone and B of sort border are used. The primitive

function takes in parameter the Conservative value on a zone (which models
the currently computed �ow on the zone), and normalizes it into a value called
Primitive. The convectiveFlux function takes in parameter the Primitive

value on a zone, and computes Fxc that corresponds to the update of the �ow
within the zone. Similarily, convectiveFluxBC function computes FxcBC, that
corresponds to the update of the �ow on the borders of the zone: to perform this
task, it must take in parameter, in addition to the Primitive value, the value
Conservative on every border of the zone. Note that this function is declared
as in Section 2.

These Fxc and FxcBC updates are combined by the fluxBalance function,
that produces the Balance value, which is in turn normalized by the explicit-
Increment function into the Rhs value: this value describes how the �uid �ow
evolves during a step of simulation. Finally, the inlet, outpres and wall func-
tions all produce the Conservative value on a border (which is used by the
convectiveFluxBC function), and take in parameter the Conservative value
available on the zone related to that border. What distinguish these functions
are the guards, which state that they can be used to get the Conservative value
only on borders of a speci�c type.

Generated Rewriting Rules. Figure 5 presents the rewriting rules that can be
automatically extracted from the mesh of Figure 3 (Lines 1 to 9), and generated
from the function speci�cations in Figure 4 (Lines 11 to 30). The rules extracted
from the mesh implement the semantics of the zoneOfBorder, getBorderType
and bordersOfZone functions. The rules generated from the function speci�ca-

3 we consider here that missing value constructors are implicitly added in the term
signature.
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1 rl zoneOfBorder(border0) => zone1 .
2 rl zoneOfBorder(border2) => zone1 .
3 rl zoneOfBorder(border1) => zone1 .
4 rl zoneOfBorder(border3) => zone1 .

5 rl getBorderType(border0) => inputFlow .
6 rl getBorderType(border2) => wall .
7 rl getBorderType(border1) => wall .
8 rl getBorderType(border3) => outputFlow .

9 rl bordersOfZone(zone1) => fieldList(border0, border1, border2, border3) .
10

11 vars Z: zone, B: border .
12

13 rl appNone(data(Primitive, Z)) => appDone(data(Primitive, Z), primitive,
14 appNone(data(Conservative, Z))) .
15 rl appNone(data(Fxc, Z)) => appDone(data(Fxc, Z), convectiveFlux,
16 appNone(data(Primitive, Z))) .
17 rl appNone(data(FxcBC, Z)) => appDone(data(FxcBC, Z), convectiveFluxBC,
18 appNone(data(Primitive, Z)), appNone(data(Conservative, bordersOfZone(Z)))) .
19

20 rl appNone(data(Balance, Z)) => appDone(data(Balance, Z), fluxBalance,
21 appNone(data(Fxc, Z)), appNone(data(FxcB, Z)) ) .
22 rl appNone(data(Rhs, Z)) => appDone(data(Rhs, Z), explicitIncrement,
23 appNone(data(Balance, Z)) ) .
24

25 crl appNone(data(Conservative, B)) => appDone(data(Conservative, B), inlet,
26 appNone(data(Conservative, zoneOfBorder(B)))) if bc_type(B) == Inlet .
27 crl appNone(data(Conservative, B)) => appDone(data(Conservative, B), outpres,
28 appNone(data(Conservative, zoneOfBorder(B)))) if bc_type(B) == Outpres .
29 crl appNone(data(Conservative, B)) => appDone(data(Conservative, B), wall,
30 appNone(data(Conservative, zoneOfBorder(B)))) if bc_type(B) == Wall .

Fig. 5. Generated Rewriting Rules

tions state that if a data is currrently not computed by a function (i.e., it is
wrapped in the appNone) and is an output of an function, then it is generated
by that function4 (with the corresponding inputs not being generated yet).

Rewriting rules Application. The rewriting rules of Figures 2 and 5 can be used to
produce a code assembly computing any data generated by the functions declared
in Figure 4. For instance, to get the code assembly computing the value Rhs on
the zone zone1, one needs to rewrite the term appNone(data(Rhs, zone1)).
Figure 6 presents the result of this rewriting by only showing the subterms
constructed with the data constructors (in green), and the subterms of sort
functionID (in blue): we thus obtain a DAG of functions (the subterms of sort
functionID) exchanging data. Note that the convectiveFluxBC function has 5
parameters, due to the mesh having 4 borders.

5.2 Evaluation of the Library

Each of our 597 generation problems were executed 10 times on a single 2.5GHz
Intel Xeon CPU with 32GB of memory that was hosting a CentOS 8 operat-
ing system. Figure 7 presents the execution time and the number of rewriting
rules applied for each generation problem: the smallest generation time is 2.14
milliseconds with 246 applied rewriting rules, and the largest generation time is

4 we consider here that the name of the function is implicitly declared in the term
signature with sort functionID.
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data(Conservative, zone1)

primitive inlet wall wall outpres

data(Primitive, zone1)

convectiveFlux convectiveFluxBC

data(Fxc, zone1)

data(Conservative, border0) data(Conservative, border1) data(Conservative, border2) data(Conservative, border3)

fluxBalance data(Balance, zone1) explicitIncrement data(Rhs, zone1)

data(FxcBC, zone1)

Fig. 6. Generated Graph

7.82 milliseconds with 680 applied rewriting rules. On average in this experiment,
hrewrite applied 104619 rewriting rules per second.

6 Related Work

In the past decades, the subject of ranked and unranked tree transformation
has received a lot of attention, especially in the context of XML and internet
technologies. XDuce [17] and later CDuce [5] are functional languages with a
syntax and type system dedicated to manipulate XML unranked trees. Fast [11]
is a tool allowing the composition of tree transducers that implements e�cient
transformation of ranked trees. Transducers for unranked trees have also been
investigated, in particular in the context of e�ciency: in [2, 14], the authors
investigate methods to transform unranked trees in linear time. These approaches
are very interesting and could easily be extended with a �xpoint to construct
rewriting engines. However such engines would not be expressive enough, in
particular they would not be able to correctly manage user-de�ned rewriting
rule conditions. Moreover, as these approaches are focused on trees, they should
be adapted to manage DAGs.
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As discussed in [15], many existing tools can be used as rewriting engines. In
particular, Maude [9] is one of the most e�cient. Maude only considers ranked
trees, but its very �exible syntax and its support for associativity [13] allow to
simulate unranked term constructors whose subterms must all be of the same
sort. However, Maude does not support pattern matching of unranked trees, and
its terms cannot carry non-term values.

Several term rewriting tools can be accessed directly from a programming
language like hrewrite. For instance, Maude recently got a new Python API [23]
where all declarations can be done using the Maude DSL, and a dedicated API is
provided to access speci�c modules and apply rewriting rules. The term_rewri-
ting [24] is a Rust library for rewriting unsorted and ranked terms. The library
has a relatively complex API to create terms and rewriting rules directly, but
provides a parser to directly extract terms and rewriting rules from their string
description. Similarily to Maude in Python, terms of this library cannot directly
interact with other Rust data (constructors and variables can only be strings).
And the term-rewriting [3] is a library for rewriting unsorted and unranked
terms implemented in hasksell, with a simple API to construct terms and rewrit-
ing rules, and where constructors and variable can be any haskell data.

Among the other tools cited in [15], Rascal [6] is a very expressive tool for
meta programming that includes pattern matching lists and term rewriting. The
application domain of this tool is related to hrewrite (which is used to automat-
ically generate code assembly), but it cannot express unranked tree language
nor select a speci�c matching using user-de�ned guard as it is necessary in our
usecase.

7 Conclusion

In this paper, we presented a new rewriting engine on unranked trees, called
hrewrite. We described the motivations for this new engine, its structure and its
Python API.

In future work, we want to extend the functionalities of hrewrite by allowing
several signatures for a term constructor. Moreover, we intend to improve the
e�ciency of the rewriting algorithm by investigating tree transducers modulo
theory [10]. Indeed, transducers could be an e�cient way to implement sets
of rewriting rules, and term matching must be performed modulo the subsort
relation. Finally, Computational Fluid Dynamics is not the only context in which
the problem of automatic code assembly occurs, and other contexts may have
other expressivity requirement. Consequently, we may investigate the extension
of hrewrite to other ways to specify data, like row types [22], set types [7] or
guarded algebraic data types [26].
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Abstract. This paper presents a new implementation of Maude-SE that
provides a flexible yet efficient framework for connecting Maude to SMT
solvers. There exist previous implementations to integrate Maude and
SMT solvers at the C++ level, but they do not support uninterpreted
functions and folding reduction, and are very difficult to customize. The
new version of Maude-SE supports uninterpreted functions, symbolic
reachability analysis with folding, and an abstract Python connector
that makes it easy to integrate and customize SMT solving with Maude
using its Python API, without having to understand Maude’s internal
implementation and recompile the source code.

1 Introduction

Rewriting modulo SMT combines term rewriting with SMT solving to provide a
powerful framework for modeling and analyzing infinite-state concurrent systems
[7,25]. In this approach, system states are symbolically represented as terms
constrained by SMT formulas, while transitions between these states are specified
using conditional rewrite rules. Rewriting modulo SMT has been widely used in
various applications, including security [1,27,28], real-time systems [2,3,4,21],
cyber-physical systems [19,20,18,24], business process models [15], etc.

The Maude tool [12] provides the basic functionality for SMT solving and
symbolic reachability analysis. Maude-SE [30] extends Maude with additional
functionality, such as witness generation, for rewriting modulo SMT. However,
the existing implementations have several limitations:

– Limited SMT Theory Support: only Booleans, integers, and reals are
supported, and uninterpreted functions are not supported.

– Absence of Folding Reduction: folding [22,5], a well-known state-space
reduction method for symbolic reachability analysis, is not supported.

– Lack of Customizability: altering existing features is very difficult due to
the heavy dependence on Maude’s internal C++ implementation.

To address these difficulties, this paper presents a new implementation of
Maude-SE that provides a flexible yet efficient framework for connecting Maude
to SMT solvers. The new version of Maude-SE supports uninterpreted functions
and symbolic reachability analysis with folding. A key feature of our tool is an
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abstract Python connector that facilitates integrating Maude to SMT solvers and
customizing its functionality at the Python level, without having to understand
Maude’s internal implementation and recompile the source code.

Developing abstract Python connectors that achieve both high flexibility and
high performance is a difficult design challenge. We use the maude library [26]
to invoke user-defined Python functions directly from within Maude. However,
using the maude library requires an understanding of the internal data structures
of Maude, making this a difficult task. To achieve the best performance of symbol
reachability analysis with folding, term manipulation and symbol search graph
construction must be implemented at the C++ level.

Our tool has been implemented to enjoy the best of both worlds: flexible
capability of SMT solving using each SMT solver’s Python API, and efficient
exploration of symbolic search space using Maude. Our abstract connector hides
details about Maude’s internal implementation, so users only need to under-
stand the Python API for the target SMT solver. The main routine for symbolic
reachability analysis and folding are implemented at the C++ level and use the
maude library to invoke user-defined Python functions for SMT solving.

In addition to folding and abstract connectors, the new version of Maude-SE
supports improved modeling and analysis capabilities as follows:

– We have integrated four widely used SMT solvers with Maude: CVC4 [9],
CVC5 [8], Yices2 [16], and Z3 [13]. Note that Maude only supports CVC4
and Yices2, and the older version of Maude-SE additionally supports Z3.

– We support the theory of equality and uninterpreted functions, which is
not supported in the previous implementations. This involves a Maude-level
interface to declare any free symbols as SMT symbols.

The rest of the paper is organized as follows. Section 2 gives some background
on rewriting modulo SMT. Section 3 introduces the usage of Maude-SE. Section 4
presents the design and implementation of Maude-SE, including a case study of
connecting a new SMT solver to Maude using an abstract Python connector.
Finally, Section 5 gives some concluding remarks. The tool, together with several
examples, is available at https://maude-se.github.io.

2 Background on Rewriting Modulo SMT

An order-sorted signature is a triple Σ = (S,≤, F ) with a finite poset of sorts
(S,≤) and a set of function symbols F typed with sorts in (S,≤). We denote
by TΣ(X)s the set of Σ-terms of sort s over a set X of S-sorted variables, and
by TΣ,s the set of ground Σ-terms of sort s. TΣ(X) and TΣ denote the set of
Σ-terms and the set of ground Σ-terms, respectively. The set of variables in a
term t is denoted by var(t).

A built-in subtheory E0 is a first-order theory that is handled by SMT solving.
The built-in subsignature Σ0 = (S0, F0) of E0 is a subsignature of Σ. The set
QFΣ0

(X0) denotes the set of quantifier-free Σ0-formulas over X0 ⊆ X a set of
built-in variables. The satisfiability of a formula ϕ ∈ QFΣ0

(X0) in E0 can be
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decided using the SMT solver. We require that any terms of built-in sorts are
syntactically built-in terms (i.e., TΣ(X0)s0 = TΣ0(X0)s0 for each s0 ∈ Σ0).

A rewrite theory modulo a built-in subtheory E0 [25] is a triple R = (Σ,E,R),
where: (i) Σ is an order-sorted signature with the built-in subsignature Σ0 ⊆ Σ;
(ii) (Σ,E) is an equational theory with E a set of Σ-equations; and (iii) R is
a set of topmost1 rewrite rules of the form l −→ r if ϕ, with l, r ∈ TΣ(X)State
for some sort State, and ϕ ∈ QFΣ0

(X0). We require that (Σ,E) protects E0 (i.e.,
for built-in terms t1, t2 ∈ TΣ0 , t1 =E t2 implies E0 |= t1 = t2, where =E is a
congruence relation on Σ-terms induced by (Σ,E)).

A constrained term is a pair (t ;ϕ) of a term t ∈ TΣ(X0)State and a constraint
ϕ ∈ QFΣ0

(X0). Intuitively, (t ; ϕ) represents the set of all ground instances tρ of
term t by substitution ρ such that E0 |= ϕρ holds. A one-step symbolic rewrite
(t ; ϕt) ⇝R (u ; ϕu) holds iff there exists a rule l −→ r if ϕ and a substitution
θ such that (i) lθ =E t, (ii) rθ =E u, (iii) E0 |= ϕu, where E0 |= (ϕt ∧ ϕθ) ↔ ϕu

[6,7,25]. The correctness of rewriting modulo SMT [25] guarantees that symbolic
rewrites have corresponding concrete rewrites, and vice versa.

An abstraction of built-ins for a term t ∈ TΣ(X) is a pair (t◦, σ◦) of a term
t◦ ∈ TΣ\Σ0(X) and a substitution σ◦ : X0 → TΣ0(X0) such that t = t◦σ◦ and t◦
contains no duplicate built-in variables. Any non-variable built-in subterms of t
are replaced by distinct built-in variables in t◦. Let (t ;ϕ) be a constrained term
and (t◦, σ◦) an abstraction of built-ins for t. If dom(σ◦) ∩ vars((t ; ϕ)) = ∅, then
(t ; ϕ) and (t◦ ; ϕ ∧ Ψσ◦) are equivalent, where Ψσ◦ =

∧
x∈dom(σ◦) x = xσ◦ [25].

Given two constrained terms (t ; ϕt) and (u ; ϕu), a subsumption relation
(t ;ϕt) v (u ;ϕu) holds iff there exists a substitution θ such that (i) t =E uθ, and
(ii) E0 |= ϕt → ϕuθ [22]. If (t ; ϕt) v (u ; ϕu), then the set of terms represented
by (u ; ϕu) includes the set of terms represented by (t ; ϕt).

Since version 3, Maude [12] provides an interface to perform SMT solving and
symbolic reachability analysis, using connections to Yices2 [16] and CVC4 [9].
It declares built-in signatures with three sorts Boolean, Integer, and Real for
the theories of Booleans, integers, and reals, respectively, in the SMT-LIB stan-
dard [10]. The check command invokes the underlying SMT solver to check the
satisfiability of a given formula. The smt-search command performs symbolic
reachability analysis using rewriting modulo SMT.

3 The Usage of Maude-SE

This section describes the user interface, commands and usage of Maude-SE.
Section 3.1 briefly explains the admissibility requirements that system modules
should meet in Maude-SE. Section 3.2 explains the SMT theories supported by
Maude-SE, including the theory of equality and uninterpreted functions (EUF).
Section 3.3 explains Maude-SE’s analysis commands.
1 To ensure that all rewrite rules take place at the top of the term, we assume that

sort State is at the top of one of the connected component of poset of sorts, and no
operator in Σ has State or any of its subsorts as an argument sort.
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3.1 Admissibility Requirements

In Maude-SE, a system module M specifies a rewrite theory modulo a built-in
subtheory satisfying the following conditions:

– The equational theory of M protects the underlying SMT theory; and
– For each rule l −→ r if ϕ, any variable that does not appear in l has a

built-in sort, and ϕ is decomposed into pure SMT formulas and non-SMT
conditions, where non-SMT conditions are admissible in the usual way [12].

As an example, we consider the following specification adapted from [2]. The
system module COFFEE-MACHINE specifies the coffee machine parametric timed
automaton (PTA). The behavior of COFFEE-MACHINE is the same as the original
one [2], except that we use auxiliary functions and equations, where each rule
condition is decomposed into an non-SMT condition and a pure SMT formula.
mod COFFEE−MACHINE is

protecting REAL .
sorts State Location .
op <_;_;_> <_;_;_> : Location Real Real Real Real Real −> State [ctor] .
op [_;_;_] <_;_;_> : Location Real Real Real Real Real −> State [ctor] .
ops idle addsugar preparingcoffee cdone : −> Location [ctor] .

sort Tuple{Location,Real,Real,Boolean} .
op {_,_,_,_} : Location Real Real Boolean −> Tuple{Location,Real,Real,Boolean} [ctor] .

vars T X Y X' Y' P1 P2 P3 : Real . vars L L' : Location . var PHI : Boolean .

crl [tick] : [ L ; X ; Y ] < P1 ; P2 ; P3 >
=> < L ; X + T ; Y + T > < P1 ; P2 ; P3 >

if PHI := tickCond(L, T, X, Y, P2, P3) /\ (T >= 0/1 and PHI) = true [nonexec] .

crl [toAddsugar] : < L ; X ; Y > < P1 ; P2 ; P3 >
=> [ L' ; X' ; Y' ] < P1 ; P2 ; P3 >

if {L', X', Y', PHI} := nextAddSugar(L, X, Y, P1, P2) /\ PHI = true .

crl [toOther] : < L ; X ; Y > < P1 ; P2 ; P3 >
=> [ L' ; X' ; Y' ] < P1 ; P2 ; P3 >

if {L', X', Y', PHI} := nextOther(L, X, Y, P2, P3) /\ PHI = true .

op tickCond : Location Real Real Real Real Real −> Boolean .
eq tickCond(idle, T, X, Y, P2, P3) = true .
eq tickCond(addsugar, T, X, Y, P2, P3) = Y + T <= P2 .
eq tickCond(preparingcoffee, T, X, Y, P2, P3) = Y + T <= P3 .
eq tickCond(cdone, T, X, Y, P2, P3) = X + T <= 10/1 .

op nextAddSugar : Location Real Real Real Real −> Tuple{Location,Real,Real,Boolean} .
eq nextAddSugar(idle, X, Y, P1, P2) = {addsugar, 0/1, 0/1, 0/1 <= P2} .
eq nextAddSugar(addsugar, X, Y, P1, P2) = {addsugar, 0/1, Y, Y <= P2 and X >= P1} .
eq nextAddSugar(cdone, X, Y, P1, P2) = {addsugar, 0/1, 0/1, 0/1 <= P2} .

op nextOther : Location Real Real Real Real −> Tuple{Location,Real,Real,Boolean} .
eq nextOther(addsugar, X, Y, P2, P3) = {preparingcoffee, X, Y, Y <= P3 and Y === P2} .
eq nextOther(preparingcoffee, X, Y, P2, P3) = {cdone, 0/1, Y, 0/1 <= 10/1 and Y === P3} .
eq nextOther(cdone, X, Y, P2, P3) = {idle, X, Y, X === 10/1} .

endm
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3.2 Supported SMT Theories

The new version of Maude-SE supports the theories of Booleans, integers, and
reals, which are already supported in the previous implementations, declared in
the functional modules BOOLEAN, INTEGER, and REAL, respectively. In addition,
we support the theory of equality and uninterpreted functions (EUF), which is
widely used for typical SMT-based modeling and analysis.

Following the existing method of declaring SMT symbols in Maude [12],
SMT symbols in Maude-SE are declared using the operator attribute special
(id-hook SMT_Symbol (SMTSymbolId)), where SMTSymbolId represents the
corresponding symbol in the underlying SMT theory.

For example, in the following module, we declare an uninterpreted function f
with sort A, an uninterpreted binary function g with integer arguments, and an
equality symbol for sort A, where EUF denotes uninterpreted symbols, and ===
denotes the equality symbol in the SMT theory.
fmod EUF−EX is

protecting INTEGER .
sort A .
op f : A −> A [special (id−hook SMT_Symbol (EUF))] .
op g : Integer Integer −> Integer [special (id−hook SMT_Symbol (EUF))] .
op _===_ : A A −> Boolean [special (id−hook SMT_Symbol (===))] .

endfm

There is some admissibility requirement for uninterpreted functions, which
is assumed to protect the corresponding SMT theory. Any operator declared as
an uninterpreted SMT function must be a free constructor with respect to the
equational theory. That is, there should be no equational axioms (e.g., assoc,
comm, and id) on operators for uninterpreted SMT functions, and there is no
equation to reduce such uninterpreted functions.

3.3 Analysis Commands

Maude-SE provides various analysis commands, including check, show model,
smt-search, and show smt-path, using Maude’s meta-interpreter [12].2 The
check command determines the satisfiability of Boolean formulas. The show
model command returns the satisfying assignment, if any, for the last check
command. The smt-search command performs symbolic reachability analysis,
potentially with folding. Finally, the show smt-path command displays a sym-
bolic/concrete path for the last smt-search result.

Given a module M , a Boolean formula ψ, and an (optional) SMT theory Th,
the check command determines the satisfiability of ψ under the theory Th:3

check in M : ψ using Th .

2 As usual, each command has a corresponding metalevel function implemented at the
C++ level, and the meta-interpreter invokes these metalevel functions.

3 For SMT solvers with automatic theory detection, ‘using Th’ can be omitted.
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As an example, consider the EUF-EX module of Section 3.2. We can check the
satisfiability of formulas and get a satisfying assignment as follows.
MaudeSE> check I:Integer > 2 and g(I:Integer, J:Integer) > 3 and f(X:A) === X:A .
result: sat

MaudeSE> show model .
assignment: I |−−> 3; J |−−> 2; X |−−> A!val!0; g |−−> [else −> 4]; f |−−> [else −> A!val!0]

The smt-search command performs symbolic reachability analysis, along
with folding. Given an initial term t ∈ TΣ(X0), a goal pattern u ∈ TΣ(X), and
a goal condition φ ∈ QFΣ0

(X0), the following command searches for n solutions
that are reachable within m rewrite steps from t, match the goal pattern u, and
satisfy the goal condition φ under the SMT theory Th:

{fold} smt−search [n,m] in M : t =>∗ u such that φ using Th .

where {fold}, Th, n, and m are optional. With {fold}, the command uses
folding [5,22] to reduce the state space by ignoring subsumed states in terms of
the subsumption relation v between constrained terms (see Section 2).

The results of the search command include a symbolic goal term, an SMT
constraint, a concrete term, and a substitution. A symbolic goal term and an
SMT constraint represent a constrained term for a goal. A concrete term repre-
sents a concrete witness of the constrained term, given by a satisfying assignment
obtained by the underlying SMT solver.

For example, consider the system module COFFEE in Section 3.1. The follow-
ing command finds the first solution of the PTA coffee machine that goes to
cdone with all the clocks and parameters are greater than or equal to 0. It is
worth noting that the same command without folding does not terminate.
MaudeSE> {fold} smt−search [1]: < idle ; X:Real ; Y:Real > < P1:Real ; P2:Real ; P3:Real >

=>∗ < cdone ; X':Real ; Y':Real > < P1:Real ; P2:Real ; P3:Real >
such that X:Real >= 0/1 and Y:Real >= 0/1 and X':Real >= 0/1 and Y':Real > 0/1 and

P1:Real >= 0/1 and P2:Real >= 0/1 and P3:Real >= 0/1 and P1 >= P2 .
Solution 1 (state 6)
Symbolic term: < cdone ; %ubVar$8 ; %ubVar$9 > < PAR1 ; PAR2 ; PAR3 >
Constraint: X >= 0/1 and Y >= 0/1 ...
Substitution: %ubVar$1 <−− 0/1 ; ... ; P1 <−− 1/2 ; ...
Concrete term: < cdone ; 0/1 ; 0/1 > < 1/2 ; 0/1 ; 0/1 >

The show smt-path command returns a path for the last smt-search result.
It takes two arguments: a path type (either symbolic or concrete) and a state
number. A symbolic path is given by a sequence of contracted terms and rewrite
rules. The corresponding concrete path is an instance of the symbolic path with a
satisfying assignment. For example, the following commands show the symbolic
and concrete paths for the above smt-search command.
MaudeSE> show smt−path symbolic 6 .
( X >= 0/1 and Y >= 0/1 ... ; < idle ; X ; Y > < P1 ; P2 ; P3 > ) =====[ toAddsugar ]=====>
( X >= 0/1 and Y >= 0/1 ... ; [addsugar ; 0/1 ; 0/1] < P1 ; P2 ; P3 > ) ...

MaudeSE> show smt−path concrete 6 .
< idle ; 0/1 ; 0/1 > < 1/2 ; 0/1 ; 0/1 > ===[ toAddsugar ]===>
[addsugar ; 0/1 ; 0/1] < 1/2 ; 0/1 ; 0/1 > ...
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Fig. 1. The architecture of Maude-SE.

4 Design and Implementation of Maude-SE

This section presents the design and implementation of Maude-SE. We extend
the existing Maude-SMT wrapper interface with additional functionality such
as folding, uninterpreted functions, and concrete witness generation. We also
propose an abstract Python connector to easily implement and customize new
connectors without having to understand Maude’s internal implementation.

4.1 Overall Architecture

Maude-SE Wrapper Interface. The original Maude implementation defines a
generic SMT wrapper interface for connecting SMT solvers to Maude. It provides
several functions, such as checkSat for checking satisfiability using the SMT
solver, maude2smt for converting Maude terms to data structures for the SMT
solver, etc. However, it has several limitations as mentioned in Section 1.

We extend the Maude SMT wrapper interface to provide additional features
and functionalities, including uninterpreted functions and symbolic reachability
analysis with folding. Figure 1 illustrate an overall architecture of the Maude-SE
wrapper interface. This interface allows various SMT solvers, such as Z3, Yices2
and CVC4, to be connected to Maude.

The Maude-SE wrapper interface defines four additional functions as follows:
smt2maude converts the data structures for the SMT solver into Maude terms;
genAssn returns a satisfying assignment; subsume computes the subsumption
relation; and addSmtSymbs associates SMT operators in Maude, declared with
the attribute SMT_Symbol, with the corresponding SMT symbols.

The user interface and commands, explained in Section 3, are implemented
using this new wrapper interface. E.g., show model and show smt-path are
implemented using concrete witness generation with smt2maude and genAssn,
and EUF is supported with addSmtSymbs. The smt-search command has been
reimplemented to support folding with subsume.

Abstract Python Connector. Adding a new SMT connector or customizing such
connectors is difficult, because it requires an understanding of both Maude’s
internal implementation and the SMT solver APIs. For example, implementing
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checkSat requires manipulating the Maude term data structure. Furthermore,
the Maude source files must be compiled each time an update is made

To facilitate adding and customizing connectors, we introduce an abstract
connector at the Python level. Our abstract connector is implemented in C++,
but invokes user-defined Python functions for SMT solving directly from within
Maude. Thus, an instance of the abstract connector can be easily customized by
modifying its Python code without recompiling the source files.

As shown in Figure 1, our abstract connector has two Python components.
CmdAdapter provides functions for SMT solving that are independent of Maude
and define what the SMT solver should do. Converter provides functions to
translate Maude terms into data structures for the SMT solver and vice versa.
This part is intended to be implemented using the maude library [26].

The component CmdAdapter provides four functions. The function checkSat
checks the satisfiability of an SMT formula, and getModel returns a satisfying
assignment if one exists; these functions provide basic SMT-solving capabilities.
The function subsume checks if one constrained term subsumes another, and
mkConst builds an SMT formula to be stored in the state space.

The component Converter provides two translation functions. The dag2term
function translates Maude terms into data structures for the SMT solver, and
term2dag does the opposite. The Maude-dependent parts of these functions can
be implemented in Python using the maude library.

Using the abstract Python connector, we have implemented connectors for
widely used SMT solvers, including Z3, Yices, CVC4, and CVC5.

4.2 Case Study: Connecting a Z3 Solver

This section demonstrates the flexibility of our interface with a case study on
connecting a Z3 solver. We first show a simple implementation for the two Python
components CmdAdapter and Converter, and then explain how to customize the
implementation of CmdAdapter for different purposes.

Implementing CmdAdapter. The following class Z3CmdAdapter implements the
base abstract class CmdAdapter. A Z3 solver object, assigned to self.solver, is
used to check the satisfiability of the input formulas (checkSat) and to build a
satisfying assignment (getModel). We store an SMT formula in the state space
as is (mkConst). For two constrained terms (t ;ϕt) and (u ;ϕu) and a substitution
θ such that t =E uθ, subsume(θ,ϕt,ϕu) checks the validity of ϕt → ϕuθ.
class Z3CmdAdapter(CmdAdapter):

def checkSat(self, ∗consts):
self.solver = z3.Solver()
self.solver.add(∗consts)
return self.solver.check() == z3.sat

def getModel(self):
return {v : self.solver.model()[v] for v in self.solver.model().decls()}

def mkConst(self, c1, c2):
return z3.And(c1, c2)
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def subsume(self, subst, c1, c2):
tmpSolver = z3.Solver()
tmpSolver.add(z3.Not(z3.Implies(c1, z3.substitute(c2, ∗[(p, subst[p]) for p in subst]))))
return tmpSolver.check() == z3.unsat

Implementing Converter. The following class Z3Converter implements the
base abstract class Converter. In the constructor, we initialize four Python
maps: _symb_map and _const_map are used to translate Maude symbols, and
_sort_map and _u_sort store Maude’s sort information for translation.

class Z3Converter(Converter):
def __init__(self):

self._symb_map = { "not_" : z3.Not, ..., "_<_" : z3.z3.ArithRef.__lt__, ... }
self._const_map = { "true" : z3.BoolVal, "false" : z3.BoolVal,

"<Integers>" : z3.IntVal, "<Reals>" : z3.RealVal, ... }
self._sort_map = { "Integer" : z3.IntSort, "Real" : z3.RealSort,

"Boolean" : z3.BoolSort, ... }
self._u_sort = dict() # a map for uninterpreted sort

The dag2term function recursively builds a Z3 data structure from a Maude
term representing an SMT formula, using two auxiliary functions _declSort
and _declFunc. The dag2term function takes an additional argument special,
which contains the theory name and sorts of each uninterpreted function symbol.

def dag2term(self, t: Term, special: Dict):
if t.isVariable():

v_sort, v_name = str(t.getSort()), t.getVarName()
return z3.Const(v_name, self._declSort(v_sort))

symbol, symbol_sort = str(t.symbol()), str(t.getSort())
theory, sorts = special[symbol]

if theory == "euf" :
args = [self.dag2term(arg, special) for arg in t.arguments()]
f = self._declFunc(symbol, ∗sorts) # declare the function
return f(∗args)

if symbol in self._symb_map:
op, args = self._symb_map[symbol], [self.dag2term(arg, special) for arg in t.arguments()]
return op(∗args)

if symbol in self._const_map:
val = str(t)
... # cleanup the "val" string
return self._const_map[symbol](val)

def _declSort(self, sort: str):
return self._u_sort[sort]() if sort in self._u_sort else z3.DeclareSort(sort)

def _declFunc(self, func: str, ∗args):
return z3.Function(func, ∗args)

The term2dag function converts a Z3 data structure representing an SMT
formula into a Maude term. We use the parseTerm function from the maude
library, which parses a string and builds a Maude term. For this purpose, the
auxiliary function _toString creates a string from a Z3 data structure.
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def term2dag(self, term, module):
return module.parseTerm(self._toString(term))

def _toString(self, term):
if z3.is_and(term):

return " and ".join([self._toString(t) for t in term.children()])
...
if z3.is_add(term):

l, r = self._toString(term.arg(0)), self._toString(term.arg(1))
return f"{l} + {r}"

if isinstance(term, z3.z3.FuncDeclRef): # variable
sort_table = {"Int" : "Integer", "Real" : "Real", "Bool" : "Boolean"}
sort_s = str(term.range())
return f"{term.name()}:{sort_table[sort_s]}"

if isinstance(term, z3.RatNumRef): # rational
return f"({term.numerator()}/{term.denominator()}).Real"

...
if isinstance(term, z3.z3.ArithRef): # In this case, the term must be a variable

return f"{term}:Integer" if term.is_int() else f"{term}:Real"

Customizing CmdAdapter. The following shows three variations of the mkConst
function implemented using different Z3 tactics. The first function uses rewriting
to obtain a simplified formula. The other functions use a syntactic/semantic
equality check to remove subformulas that are subsumed by context
def mkConst(self, c1, c2): # version 1: applying rewriting simplification

return z3.simplify(z3.And(c1, c2))

def mkConst(self, c1, c2): # version 2: removing sub−formulas, subsumed by context
return z3.Tactic('ctx−simplify').apply(z3.And(c1, c2)).as_expr()

def mkConst(self, c1, c2): # version 3: using solver to check context subsumption
return z3.Tactic('ctx−solver−simplify').apply(z3.And(c1, c2)).as_expr()

The following shows two variants of the checkSat function implemented
using the Z3 tactics described in [23]. The first function simplifies an input
formula and checks if the formula reduces to true. The other function first
applies Gaussian elimination before checking the satisfiability of a formula.
def checkSat(self, ∗consts): # version 1: checkSat with simplification only

self.solver = z3.Tactic('simplify').solver()
self.solver.add(∗consts)
return self.solver.check() == z3.sat

def checkSat(self, ∗consts): # version 2: checkSat with Gaussian elimination and SMT
self.solver = z3.Then('solve−eqs', 'smt').solver()
self.solver.add(∗consts)
return self.solver.check() == z3.sat

4.3 Implementation of smt-search
This section explains the main idea and data structures used to implement the
smt-search command with folding. We also explain a theory transformation
that allows system modules with the more relaxed admissibility requirements
shown in Section 3.1 than the original admissibility requirements in [25].
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Theory Transformation. As explained in [25], to match a term to a pattern u
modulo SMT, we need to obtain an abstraction of built-ins (u◦, σ◦) for u.4 There
are two cases where matching modulo SMT is performed: applying rewrite rules
and checking subsumption for folding. We maintain each constrained term in the
state space as its abstraction of builtins to avoid repeated computations.

For this purpose, we consider a theory transformation, introduced in [25].
Given a rewrite theory R we obtain an equivalent rewrite theory R◦ without
duplicate built-in variables on the left side of each rule. More precisely, each rule
l −→ r if ϕ in R is transformed into the following rule in R◦, where (l◦, σ◦) is
an abstraction of built-ins for l and Ψσ◦ =

∧
x∈dom(σ◦) x = xσ◦:

l◦ −→ r if ϕ ∧ Ψσ◦

Consider a constrained term (t◦ ; ϕt) and a topmost rule l◦ −→ r if ψ ∧ Ψ ,
where t◦ and l◦ do not contain duplicate built-in variables, ψ denotes a non-SMT
condition, and Ψ denotes a pure SMT formula. Suppose the rule is applied to t◦
and a term u = rθ is obtained with substitution θ such that t◦ =E l◦θ. We first
obtain a term v by renaming each built-in variable in u that appears in r and Ψ
but not in l◦. We then store the following constrained term into the state space,
where (v◦, σ◦) is an abstraction of built-ins for v:

(v◦ ; ϕt ∧ Ψθ ∧ Ψσ◦)

Folding. Suppose there are N constrained terms in the previously explored state
space. Consider a new constrained term (t;ϕ). A naive implementation of folding
compares (t ; ϕ) with all N constrained terms, resulting in a time complexity of
O(N2) for state space exploration, which is O(N) without folding. Also, some
of these N constrained terms may have “equivalent” patterns up to renaming;
if t does not match one of these patterns, then t does not match all of them.

We implement a data structure to concisely maintain constrained terms with
equivalent patterns. As shown in Figure 2, it is a single-depth tree where the
root is a representative pattern u and the children are constrained terms with a
pattern equivalent to u, We use this structure to avoid redundant matching: for
a new constrained term (t ; ϕ), if t does not match the representative pattern,
then we can ignore all constrained terms in the tree.

We also use Maude’s “folder” data structure for narrowing-based reachability
analysis [14]. Given a set of terms, it identifies and manages a set of the most
general patterns in terms of E-matching. For example, if a term t matches a
term u, only u is stored in the data structure. This data structure is part of the
official Maude distribution, and is well maintained and efficiently implemented.
We utilize it to minimize the number of term matchings required for folding.
4 To illustrate, consider two terms f(1) and f(x + 1), where 1 and x + 1 are terms of

built-in sorts. f(1) does not match f(x+1), but for θ = {x 7→ 0}, f(1) and f(x+1)θ
are equivalent modulo SMT. Using the abstractions of built-ins (f(y), {y 7→ 1}) and
(f(z), {z 7→ x + 1}), we can easily check (f(y) ; y = 1) v (f(z) ; z = x + 1).
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Term
Pattern

Term 1

Constraint 1
…

Term 2

Constraint 2

Term 3

Constraint 3

Term n

Constraint n

Fig. 2. The data structure for efficient folding.

5 Conclusion

We have presented an improved implementation of Maude-SE that provides a
flexible yet efficient framework for connecting Maude to SMT solvers. In the
previous implementations, uninterpreted functions are not supported, symbolic
reachability analysis is not integrated with folding, and customizing SMT solving
features requires direct modification of Maude’s internal C++ implementation.
The new version of Maude-SE now supports uninterpreted functions, symbolic
reachability analysis with folding, and abstract Python connectors to easily add
new SMT solvers and customize its functionality in Python. Our implementation
has successfully addressed the design challenges of achieving both high flexibility
and high performance, combining flexible capability of SMT solving in Python
and efficient exploration of symbolic search space in Maude.

Future work includes connecting Maude to various SMT solvers, such as
dReal [17] and MathSat [11], using our Python connectors, and implementing
search strategies for incremental rewriting modulo SMT [29].
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Abstract. In several symbolic reachability problems, guiding the search
towards the desired goal is desirable or required to reduce the state space.
We naturally extend the Maude strategy language to be applied for nar-
rowing instead of rewriting. A prototype implementation is proposed.
This extension is applied to implement a Prolog-like logic programming
language with negation, cut, associative operators, and more.

1 Introduction

Symbolic reachability problems appear in many relevant verification contexts,
and the narrowing features of Maude [5] can be used to solve them [8, 9]. How-
ever, in some situations, uncontrolled narrowing is impractical and its evolu-
tion should better be restricted. For example, Maude-NPA includes several state
space reductions [12] that could be expressed in terms of strategies. Strategies
are a convenient resource to control the narrowing process, as it was highlighted
in [14] where the term narrowing strategy was introduced.

The Maude strategy language [9,10] was introduced as a simple tool to control
the application of rules. Its design is inspired on the previous experience with
internal strategies implemented at the metalevel in Maude [6], and on earlier
strategy languages like ELAN [3], Stratego [4], and TOM [2]. Other strategy
languages have appeared later like 𝜌Log [16] and Porgy [13].

In this paper, we report on an experimental extension of the Maude strategy
language to control narrowing instead of rewriting. This adaptation is natural,
but also poses some design questions and implementation challenges. The main
principle is replacing matching by unification and rewriting by narrowing, and
it works well in some elaborated experiments we have performed, among others,
on an adaptation of logic programming as narrowing with strategies. Indeed,
we present that implementation of a Prolog-like logic programming language as
a useful application of strategies for narrowing, supporting negation, cuts, and
structural axioms, and preserving the search order of Prolog. Negation and cut
are supported explicitly by the narrowing strategy language, offering a glimpse of
how other logic programmings features could be expressed by narrowing strate-
gies [11]. An independent theoretical extension of the Maude strategy language
for narrowing (with SMT conditions) has been presented in [1],
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A running prototype is available providing a command snarrow equivalent
to the srewrite command of the original strategy language. The snarrow com-
mand and the strategy language for narrowing are implemented in Python by
extending the implementation of the standard strategy language included in
the umaudemc tool [20, 21]. The Module.variant_unify method of the maude
Python library [19], which corresponds to the variant unify command, is ex-
tensively used to implement the unification and narrowing steps. The accumu-
lated substitution is maintained explicitly, and variable renamings are used to
avoid name clashes with fresh variables. An extension of the Maude interpreter
appears by running the program without arguments, and it admits all already
existing commands plus snarrow.

This paper starts by recalling some basic notions in Section 2. Section 3 intro-
duces the Maude strategy languages for rewriting and narrowing, and Section 4
introduces a Prolog-like interpreter as an interesting application of the proto-
type. The prototype is available at https://github.com/fadoss/snarrow.

2 Running example

The following system module specifies the pervasive example of a vending ma-
chine selling apples (a) and cakes (c) for some dollars ($) or quarters (q).
mod NARROWING-VENDING-MACHINE is

sorts Coin Item Marking Money State .
subsort Coin < Money .
op empty : -> Money [ctor] .
op __ : Money Money -> Money [ctor assoc comm id: empty] .
subsorts Money Item < Marking .
op __ : Marking Marking -> Marking [ctor assoc comm id: empty] .
op <_> : Marking -> State .
ops $ q : -> Coin [ctor] .
ops a c : -> Item [ctor] .
var M : Marking .
rl [buy-c] : < M $ > => < M c > . *** buy cake
rl [buy-a] : < M $ > => < M a q > . *** buy apple
eq [change] : q q q q M = $ M [variant] .

endm

Equations marked with variant are used for variant unification. Note that the
rules and variant equations have to be strictly coherent modulo axioms [5, 18].
See also the Maude manual [5] for detailed explanations of Maude modules and
its narrowing features.

3 A Maude strategy language for narrowing

In this section, we present the adaptation of the Maude strategy language [10]
for narrowing, while comparing each combinator with its original rewriting coun-
terpart. In the standard language, the srewrite 𝑡 using 𝛼 command rewrites
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the term 𝑡 according to the strategy expression 𝛼, and enumerates every term
that is obtained as a result. Similarly, snarrow 𝑡 using 𝛼 does narrowing on
the term 𝑡 with the strategy expression 𝛼, and prints every term obtained as
a result along with its accumulated substitution. The main instruction of the
language is the application of a rule, which can be combined with several other
combinators.

Rule application. A rule label rl triggers the application of any rule in the module
with that label on the subject term. In the rewrite version of the language,
this means that a subterm of the current term is rewritten with that rule. In
the narrowing version, the current term is narrowed on top (i.e. at the root
position) with that rule, following the behavior of the previous Maude narrowing
commands. Note that we use the same output format that Maude provides for
narrowing without strategies for convenience. For example, we can execute with
the following command the rule buy-a (buy an apple with 3 quarters) on a
configuration < M q > with a quarter and a variable M of sort Marking,
Maude> snarrow < M q > using buy-a .
Solution 1
result State: < q a ?0:Marking >
accumulated substitution:
M --> q q q ?0:Marking

No more solutions.

If no rule with that label can be applied, no solution is obtained. If there are
multiple applicable rules, or they can be applied in different ways, all these
options are shown. Like in the language for rewriting, an initial substitution can
be provided to (partially) instantiate the rule before narrowing. We assume that
the substitution is ground, but this will be relaxed in the future.
Maude> snarrow < M q > using buy-a[M <- $] . *** <$$> => <$qa>
Solution 1
result State: < $ q a >
accumulated substitution:
M --> $ q q q

No more solutions.

Conditional rules crl 𝑙 => 𝑟 if ⋀
𝑖
𝑢𝑖 = 𝑢′

𝑖 ∧ ⋀
𝑗
𝑣𝑗 : 𝑠𝑗 ∧ ⋀

𝑘
𝑤𝑘 => 𝑤′

𝑘 can
also be applied, and their equational and matching conditions 𝑢𝑖 = 𝑢′

𝑖 are added
as equations to the unification problem of the left-hand side of the rule 𝑙 and the
current term, in a similar manner to [15]. Sort-membership tests 𝑣𝑗 : 𝑠𝑗 are also
added to the unification problem as 𝑣𝑗 = 𝑥𝑗 where 𝑥𝑗 is a fresh variable of sort
𝑠𝑗. In the case of rules with rewriting conditions 𝑤𝑘 => 𝑤′

𝑘, a strategy must be
provided rl{𝛼1, …, 𝛼𝑛} for each rewriting condition to control the narrowing
of its left-hand side 𝑤𝑘, whose results are unified with its right-hand side 𝑤′

𝑘.
Examples are shown at the end of this section and in Section 4. Finally, the
strategy all executes a narrowing step with any non-conditional rewrite rule.
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Tests. Unification is essential for narrowing, like matching is for rewriting. A test
match 𝑃 s.t. 𝐶 of the original strategy language checks whether the current
term matches 𝑃 and satisfies the optional condition 𝐶, which may involve the
variables in 𝑃 and in the strategy scope. If it fails, the current execution path is
aborted; otherwise, it continues to the next instruction. In the narrowing case,
we rename match to unify and the current term is unified with 𝑃. Moreover, the
equational conditions in 𝐶 are added as additional equations to the unification
problem.

Maude> snarrow < M q > using unify < $ > .
Solution 1
result State: < q M >
accumulated substitution:
none

No more solutions.

This result may seem surprising at first sight, but notice that < $ > unifies with
< q M > with substitution M = q q q because we are considering variant-based
equational unification and $ = q q q q.

Regular expressions. Some combinators of the Maude strategy language are
inspired by regular expressions like idle (empty word), fail (empty language),
; (concatenation), nondeterministic choice | (union), and iteration * (Kleene
star). Their meaning can be inferred from the analogy: idle and fail work as
a successful and failed test, respectively;

Maude> snarrow < M q > using idle .
Solution 1
result State: < q M >
accumulated substitution:
none

No more solutions.
Maude> snarrow < M q > using fail .

No solutions.

𝛼 ; 𝛽 continues narrowing with 𝛽 every result of 𝛼;

Maude> snarrow < M q > using buy-a ; buy-c .
Solution 1
result State: < a c ?1:Marking >
accumulated substitution:
M --> $ q q ?1:Marking

No more solutions.

𝛼 | 𝛽 can narrow either with 𝛼 or with 𝛽, and the command shows the results
of both;
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Maude> snarrow < M q > using buy-a | buy-c .
Solution 1 Solution 2
result State: < q a ?0:Marking > result State: < c ?0:Marking >
accumulated substitution: accumulated substitution:
M --> q q q ?0:Marking M --> q q q ?0:Marking

No more solutions.

and finally, the iteration 𝛼* executes 𝛼 zero, one, or more times nondeterministi-
cally. As usual with other Maude commands, a limit on the number of solutions
to be obtained can be specified between brackets, like [2].
Maude> snarrow [2] < M q > using buy-a * .
Solution 1 Solution 2
result State: < q M > result State: < q a ?0:Marking >
accumulated substitution: accumulated substitution:
none M --> q q q ?0:Marking

Conditional. Conditional expressions 𝛼 ? 𝛽 : 𝛾 are another relevant combi-
nator of the Maude strategy language, which maintain their meaning in the
narrowing extension. The condition 𝛼 is not necessarily a simple test but an
arbitrary strategy, and its satisfaction is defined as whether it produces a result
or not. In the positive case, narrowing continues with 𝛽. Otherwise, 𝛾 is executed
from the initial term.
Maude> snarrow < M q > using buy-a ? idle : buy-c .
Solution 1
result State: < q a ?0:Marking >
accumulated substitution:
M --> q q q ?0:Marking

No more solutions.

Some useful derived combinators are defined in terms of conditionals like 𝛼 or-
else 𝛽 for 𝛼 ? idle : 𝛽 (rule priority) or 𝛼! for 𝛼* ; (𝛼 ? fail : idle)
(normalization).

Subterm rewriting. Sometimes we want to apply a strategy into a specific sub-
term of the current term. The original strategy language includes a combinator

matchrew 𝑃 [𝑥1, … 𝑥𝑛] s.t. 𝐶 by 𝑥1 using 𝛼1, …, 𝑥𝑛 using 𝛼𝑛

that matches the current term against the pattern 𝑃, checks the condition 𝐶,
rewrites the subterms matched by a subset 𝑥1, … , 𝑥𝑛 of its variables with the
corresponding strategies 𝛼1, … , 𝛼𝑛, and reassembles the term with the results in
place of the original subterms. Moreover, the strategies 𝛼𝑘 may depend on the
variables in the pattern (not only the selected 𝑛), the condition (if any), and the
strategy scope. In the case of narrowing, we replace matching by unification and
subterms are narrowed instead of rewritten, as usual. The keyword is changed
accordingly from matchrew to unifynarrow.
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Let us introduce the following module TWO-VENDING-MACHINES to illustrate
unifynarrow. It introduces a pair {_|_} able to hold two vending machines,
and a conditional rule pair with two rewriting condition fragments that will be
used later.
mod TWO-VENDING-MACHINES is

protecting NARROWING-VENDING-MACHINE .
sort Pair .
op {_|_} : State State -> Pair [ctor] .
vars M N : Marking . vars L R L' R' : State . var O : Money .
crl [pair] : {L | R} => {L' | R'} if L => L' /\ R => R' .
crl [left] : {L | R} => {L' | R}

if L = < O > /\ L => L' [nonexec] .
endm

With the subterm narrowing operator, we can choose to narrow only the first
machine, the second one, or both at the same time.
Maude> snarrow {< M q > | < M $ >} using

unifynarrow {L | R} by L using buy-a, R using buy-c.
Solution 1
result Pair: {< q a ?1:Marking > | < q q q c ?1:Marking >}
accumulated substitution:
M --> q q q ?1:Marking

No more solutions.

In this case, we can alternatively produce the same effect using the aforemen-
tioned pair rule and its two rewriting conditions. We explained earlier that
additional strategies must be specified when applying rules with rewriting con-
ditions, since they will be used to control the narrowing search. Here, we specify
the buy-a rule for the first condition and buy-c for the second one.
Maude> snarrow {< M q > | < M $ >} using pair{buy-a, buy-c} .
Solution 1
result Pair: {< q a ?5:Marking > | < q q q c ?5:Marking >}
accumulated substitution:
M --> q q q ?5:Marking

No more solutions.

The term < M q > is first narrowed with buy-a to yield < q a ?0:Marking
> and M becomes q q q ?0:Marking. Then, the term < M $ > for the second
fragment is instantiated into < $ q q q ?0:Marking > and narrowed with buy-
c. The behavior of the parallel narrowing operator is similar to that of rule
rewriting conditions. Equational conditions can be combined with rewriting ones,
like in rule left, where L = < O > imposes that the content of L is only money.
Maude> snarrow {< M q > | < M $ >} using left{buy-a} .
Solution 1
result Pair: {< q a ?3:Money > | < $ q q q ?3:Money >}
accumulated substitution:
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M --> q q q ?3:Money

No more solutions.

Keeping common variables in sync among subterms is one of the most involved
parts of the prototype. As far as we know, this is the first direct implementation
supporting narrowing with rules containing rewriting condition fragments.

Named strategies. Strategy modules were added along with the strategy language
as an extension of system modules. Named strategies can be declared with strat
𝑠𝑡 : 𝑠1 ... 𝑠𝑛 @ 𝑠 where 𝑠𝑡 is the strategy name, 𝑠1, … , 𝑠𝑛 are the sorts of its
input arguments, and 𝑠 is a merely informative sort of the terms where it is
meant to be applied. Named strategies can be bound to any number of strategy
expressions with definitions like sd 𝑠𝑡(𝑡1, …, 𝑡𝑛) := 𝛼 or csd 𝑠𝑡(𝑡1, …, 𝑡𝑛)
:= 𝛼 if 𝐶 where 𝐶 is an equational condition. The strategy expression 𝛼 may
depend on the variables in the left-hand side and in the condition (if any).
A strategy call is an expression 𝑠𝑡(𝑡1, …, 𝑡𝑛) (or simply 𝑠𝑡 if the strategy
takes no arguments) where 𝑡𝑘 may depend on the variables in the scope. All
definitions matching the call term are evaluated, as if they were combined with
the | operator. One of the main advantages of named strategies is that they
allow defining recursive strategies.

In our extension of the strategy language for narrowing, named strategies
are kept the same, and definitions are matched (not unified) against the call
term. Let us introduce the following module VENDING-STRAT to show a recursive
strategy.
smod VENDING-STRAT is

protecting NARROWING-VENDING-MACHINE .
protecting NAT .
strat buy-many-a : Nat @ State .
var N : Nat . var M : Marking .
sd buy-many-a(0) := idle .
sd buy-many-a(s N) := buy-a ; buy-many-a(N) .

endsm

The buy-many-a strategy applies buy-a as many times as indicated in its argu-
ment.
Maude> snarrow < M q > using buy-many-a(7) .
Solution 1
result State: < q a a a a a a a ?6:Marking >
accumulated substitution:
M --> $ $ $ $ $ q ?6:Marking

No more solutions.

4 Case study: logic programming
Maude has been traditionally used as a semantic framework where the behav-
ior of several programming languages can be specified and analyzed [17]. Logic
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programming is closely related to narrowing, and the semantics of logic pro-
gramming languages have already been addressed in Maude. In [9], we give the
semantics of Prolog [7] in two alternative ways:

1. using rewriting, unification through the metalevel [5, §17], and the Maude
strategy language to control rewriting; and

2. using the narrowing search command vu-narrow [5, §15].

The second implementation is cleaner and potentially more efficient, because it
uses the built-in narrowing infrastructure of Maude. However, the first implemen-
tation is more flexible and allows using strategies for programming metafeatures
like negation and cuts.

In our current framework, based on those previous specifications, logic pro-
grams are written in Maude by declaring their variables as Maude variables of
sort Term, writing any atom 𝑎 as '𝑎, any term 𝑓(𝑡1, … , 𝑡𝑛) as '𝑓[𝑡′

1, …, 𝑡′
𝑛]

where 𝑡𝑘 are transformed to 𝑡′
𝑘 recursively, any predicate 𝑓(𝑡1, … , 𝑡𝑛) as '𝑓(𝑡′

1,
…, 𝑡′

𝑛), and Horn clauses as rewrite rules (essentially, by replacing :- by =>).
For example, a fact like mother(jane, mike) will be translated into the rule
rl [mother0] : 'mother('jane, 'mike) => nil .

And a Horn clause like sibling(X, Y) :- parent(Z, X), parent(Z, Y) will
be translated into
rl [sibling] : 'sibling(X, Y)

=> 'parent(Z, X), 'parent(Z, Y) [nonexec] .

Notice that we have written nonexec (nonexecutable by rewriting) because this
rule contains a free variable Z in the right-hand side.

Moreover, in order to keep everything at the object level, we need to provide
some more information for the strategies to know the axioms and rules of the
program. In particular, the user should instantiate the following Maude theory
sth PROGRAM is

protecting LP-SYNTAX .
strat program : Nat @ PredicateList . *** Rules
op programCount : -> Nat . *** Number of rules
op hasCut : Nat -> Bool . *** Whether a rule contains a cut

endsth

Its arguments are (1) an enumeration of the program rules, where program(𝑘)
should execute the 𝑘-th rule of the logic program, (2) the total number of these
program rules (programCount), and (3) a predicate hasCut(𝑘) telling whether
the 𝑘-th rule contains a cut. These data will be used by the main strategy
to implement the semantics of Prolog. An auxiliary script prolog2maude.py is
provided in order to translate automatically a Prolog source file into a collection
of Maude modules and views instantiating this framework.

The main strategy of this Prolog interpreter operates on simple comma-
separated lists of predicates wrapped in a <_> operator of sort Conf (unlike the
previous strategy-based specification in [9], which needs to include the accumu-
lated substitution in the state) with the following rules:
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var P : Predicate . vars PL PL1 PL2 : PredicateList .
var CfPL : CfPredicateList .

crl [clause] : < P, PL1 > => < PL2, PL1 > if P => PL2 .
crl [cut] : < CfPL, !, PL > => < PL > if < CfPL > => < nil > .

The rule clause replaces the head of the list of pending goals P with a list of
goals PL2. Cuts will be implemented using the cut rule, which requires a solution
for the goals CfPL before the cut. The sort CfPredicateList of CfPL designates
cut-free lists of predicates. The Prolog semantics is specified by the following
solve strategy:

sd solve := unify < nil > or-else (
unifynarrow Conf s.t. < CfPL > := Conf

by Conf using clauseWalk(0)
| unifynarrow Conf s.t. < CfPL, !, PL > := Conf

by Conf using (cut{solveOne} ; solve)) .
sd solveOne := *** as solve, with solveOne in place of solve

We also define a second strategy solveOne, useful for defining cuts, that coin-
cides with solve except that it returns only the first solution for the current
list of pending goals (according to the input ordering of facts and rules). Both
strategies, if the list of pending goals is empty, will terminate with the accu-
mulated substitution providing an answer to the initial query. Otherwise, two
cases are considered depending on whether there is a cut in the configuration or
not. Remember that cuts in Prolog have two effects when activated: the search
commits to the clause that contains the cut, and all choice points created by
the premises of the clause before the cut are discarded. This is what the sec-
ond unifynarrow strategy does, by obtaining a single solution for CfPL with
solveOne and continuing recursively from it. If there is no cut, the auxiliary
strategy clauseWalk is used to apply the clauses of the Prolog program in or-
der, i.e. from 0 to programCount less one.

csd clauseWalk(N) := (clause{program(N)} ; solve)
| clauseWalk(s N) if N < programCount /\ not hasCut(N) .

csd clauseWalk(N) := (clause{program(N)} ; cut{solveOne})
? solve : clauseWalk(s N) if N < programCount /\ hasCut(N) .

clauseWalk also distinguishes whether the Horn clause contains a cut or not.
If it does, the cut strategy is applied again to solve the premises before the
cut and no recursive call is made since the cut makes us commit to the current
clause. In the absence of a cut, we also continue with the next Horn clause with
clauseWalk(s N). A similar strategy clauseWalkOne is defined for solveOne
with a slight difference.

csd clauseWalkOne(N) := (clause{program(N)} ; solveOne) or-else
clauseWalkOne(s N) if N < programCount /\ not hasCut(N) .

The nondeterministic choice | is replaced by or-else so that, if a solution is
found with the N-th clause, no more solutions are looked for.
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For example, using the logic program about family relations available in
Appendix A, the solve strategy can be used to obtain all siblings of Erica.

Maude> snarrow < 'sibling(X, 'erica) > using solve .
Solution 1 Solution 2
result Configuration: < nil > result Configuration: < nil >
accumulated substitution: accumulated substitution:
X --> 'sally X --> 'erica

No more solutions.

Another advantage of using the built-in Maude features for implementing
the Prolog interpreter is that we obtain out of the box support for order-sorted
terms and operators with structural axioms (any combination of commutativity,
associativity, and identity) in these logic programs. For instance, app0 and app1
are the typical recursive implementation of list concatenation in Prolog, while
app2 uses a much simpler · associative operator declared in Maude.

op empty : -> Term [ctor] .
op _·_ : Term Term -> Term [assoc ctor prec 40 id: empty] .
rl [app0] : 'append('nil, X, X) => nil .
rl [app1] : 'append(cons[X, L1], L2, cons[X, L3])

=> 'append(L1, L2, L3) .
rl [app2] : 'append(L1, L2, L1 · L2) => nil .

Indeed, we can omit the definition of append and directly use this operator. More
interesting programs can be defined leveraging associativity.

rl [cont] : 'contains(X, L1 · X · L2) => nil .
rl [rev1] : 'reverse(empty, empty) => nil .
rl [rev2] : 'reverse(X · L1, L2 · X) => 'reverse(L1, L2) .

We can reverse a list with the previous definition.

Maude> snarrow < 'reverse('a · 'b · 'c, X) > using solve .
Solution 1
result Configuration: < nil >
accumulated substitution:
X --> 'c · 'b · 'a

No more solutions.

5 Conclusions and future work

We have presented a working prototype for narrowing using strategies in Maude,
which closely follows the strategy language already available for rewriting. Rule
application in their full generality and the parallel subterm narrowing operator
pose interesting design and implementation challenges, and suggest interesting
applications. This paper also describes an implementation of a Prolog-like logic
programming language using the prototype that implements advanced features
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like cut and allows using the advanced features of Maude like structural axioms.
As future work, we aim to consider folding to reduce the search space and im-
plement the snarrow command directly as part of Maude in C++. This will
improve performance and integration with other Maude features.
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A Appendix: family relations example

A.1 Prolog code

mother(jane, mike) .
mother(sally, john) .
father(tom, sally) .
father(tom, erica) .
father(mike, john) .

sibling(X, Y) :- parent(Z, X), parent(Z, Y) .
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parent(X, Y) :- father(X, Y) .
parent(X, Y) :- mother(X, Y) .
relative(X, Y) :- parent(X, Z), parent(Z, Y) .
relative(X, Y) :- sibling(X, Z), relative(Z, Y) .

distinct(X, X) :- ! .
distinct(X, Y) .

A.2 Maude code (automated translation)

load prolog.maude

smod FAMILY is
extending LP-EXTRA+NEG . *** from prolog.maude
extending LP-EXTRA+CUT .

vars X Y Z : Term .

rl [mother1] : 'mother('jane, 'mike) => nil .
rl [mother2] : 'mother('sally, 'john) => nil .
rl [father1] : 'father('tom, 'sally) => nil .
rl [father2] : 'father('tom, 'erica) => nil .
rl [father3] : 'father('mike, 'john) => nil .
rl [sibling1] : 'sibling(X, Y)

=> 'parent(Z, X), 'parent(Z, Y) [nonexec] .
rl [parent1] : 'parent(X, Y) => 'father(X, Y) .
rl [parent2] : 'parent(X, Y) => 'mother(X, Y) .
rl [relative1] : 'relative(X, Y)

=> 'parent(X, Z), 'parent(Z, Y) [nonexec] .
rl [relative2] : 'relative(X, Y)

=> 'sibling(X, Z), 'relative(Z, Y) [nonexec] .
rl [distinct1] : 'distinct(X, X) => !, 'fail(X) .
rl [distinct2] : 'distinct(X, Y) => nil .

op family-count : -> Nat .
eq family-count = 12 .

strat family : Nat @ Term .

sd family(0) := mother1 .
sd family(1) := mother2 .
sd family(2) := father1 .
sd family(3) := father2 .
sd family(4) := father3 .
sd family(5) := sibling1 .
sd family(6) := parent1 .
sd family(7) := parent2 .
sd family(8) := relative1 .
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sd family(9) := relative2 .
sd family(10) := distinct1 .
sd family(11) := distinct2 .

op family-hasCut : Nat -> Bool .

eq family-hasCut(10) = true .
eq family-hasCut(N:Nat) = false [owise] .

endsm

view Family from PROGRAM to FAMILY is
strat program to family .
op programCount to family-count .
op hasCut to family-hasCut .

endv

smod PROLOG-FAMILY is
including PROLOG+CUT{Family} . *** from prolog.maude
vars X Y Z : Term .

endsm

A.3 Execution examples

– All children of Tom.

Maude> snarrow < 'parent('tom, X) > using solve .

Solution 1
result Configuration: < nil >
accumulated substitution:
X --> 'sally

Solution 2
result Configuration: < nil >
accumulated substitution:
X --> 'erica

No more solutions.

– All siblings (excluding one being sibling of him/herself).

Maude> snarrow < 'sibling(X, Y), 'distinct(X, Y) > using solve .

Solution 1
result Configuration: < nil >
accumulated substitution:
X --> 'sally
Y --> 'erica

Solution 2
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result Configuration: < nil >
accumulated substitution:
X --> 'erica
Y --> 'sally

No more solutions.

– All non-direct descendants of Tom or his siblings.
Maude> snarrow < 'relative('tom, Y) > using solve .

Solution 1
result Configuration: < nil >
accumulated substitution:
Y --> 'john

No more solutions.

– All non-direct ancestors of John and their siblings.
Maude> snarrow [2] < 'relative(X, 'john) > using solve .

Solution 1
result Configuration: < nil >
accumulated substitution:
X --> 'tom

Solution 2
result Configuration: < nil >
accumulated substitution:
X --> 'jane

B Step-by-step example

We detail step by step the following execution appearing in the main text.
Maude > snarrow < M q > using buy-a ; buy-c .
Solution 1
result State: < a c ?1:Marking >
accumulated substitution :
M --> $ q q ?1:Marking
No more solutions .

1. In order to execute buy-a, < M q > is unified with the left-hand side of a
fresh version of the buy-a rule:

< M0:Marking $ > => < M0:Marking a q >

This yields the unifier M=q q q #1:Marking and M0:Marking=#1:Marking.
We rename #1:Marking to ?0:Marking by technical reasons, and obtain <
?0:Marking a q > as current term and M = q q q ?0:Marking as accumu-
lated substitution (by applying the unifier substitution).
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2. This is the turn of buy-c, < ?0:Marking a q > is unified with the left-hand
side of a fresh version of the buy-c rule:

< M1:Marking $ > => < M1:Marking c >

?0:Marking = q q q #1:Marking and M1:Marking = a #1:Marking is the
most general unifier. Again, we replace #1 by ?1, and apply it to the current
term and the accumulated substitution. This yields < a c ?1:Marking > as
term and M = $ q q ?1:Marking as substitution, after simplying with q q
q q = $.
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Abstract. Most research on system design has focused on optimizing various
measures of efficiency. However, insufficient attention has been given to the de-
sign of systems optimizing resilience, the ability of systems to adapt to unex-
pected changes or adversarial disruptions. In our prior work, we formalized the
intuitive notion of resilience as a property of cyber-physical systems by using a
multiset rewriting language with explicit time. In the present paper, we study the
computational complexity of a formalization of time-bounded resilience prob-
lems for the class of η-simple progressing planning scenarios, where, intuitively,
it is simple to check that a system configuration is critical, and only a bounded
number of rules can be applied in a single time step. We show that, in the time-
bounded model with n (adversarially-chosen) disruptions, the corresponding time-
bounded resilience problem for this class of systems is complete for the ΣP

2n+1

class of the polynomial hierarchy, PH. To support the formal models and com-
plexity results, we perform automated experiments for time-bounded verification
using the rewriting logic tool Maude.

1 Introduction

Resilience is “the ability of a system to adapt and respond to change (both environ-
mental and internal)” [7]. In recent years, the task of formally defining and analyzing
this intuitive notion has drawn interest across domains in computer science, ranging
from systems engineering [28,31], particularly cyber-physical systems (CPS) [6,26],
to artificial intelligence [33,14,35,17], programming languages [12,20], algorithm de-
sign [15,10], and more. Our previous work in [1] was particularly inspired by Vardi’s
paper [38], in which he articulated a need for computer scientists to reckon with the
trade-off between efficiency and resilience.

In [1], we formalized resilience as a property of timed multiset rewriting (MSR)
systems [24,22], which are suitable for the specification and verification of various
goal-oriented systems. Although the related verification problems are undecidable in
general, it was shown that these problems are PSPACE-complete for the class of bal-
anced systems, in which facts are of bounded size, and rewrite rules do not change
configuration size. A primary challenge in [1] was the formalization of the disruptions
against which systems must be resilient. This was achieved by separating the system
from the environment, delineating between rules applied by the system and those im-
posed on the system, such as changes in conditions, regulations, or mission objectives.

160



Main Contributions. This paper formalizes the notion of time-bounded resilience. We
focus on the class of η-simple progressing planning scenarios (PPS) and investigate the
computational complexity of the corresponding verification problem. Time-bounded
resilience is motivated by bounded model checking and automated experiments, which
can help system designers verify properties and find counterexamples where their spec-
ifications do not satisfy time-bounded resilience. Moreover, bounded versions of re-
silience problems arise naturally when the missions of the systems being modeled are
necessarily bounded at some level. The main contributions of the paper are as follows.
1. We define time-bounded resilience as a property of planning scenarios. Intuitively,

a resilient system can accomplish its mission within the given time bounds, even in
the presence of a bounded number of disruptions (cf. Definition 11).

2. We investigate the computational complexity of time-bounded resilience problems,
showing that for the class of η-simple PPSs with facts of bounded size [23], the
time-bounded resilience problem with n updates is complete for the ΣP

2n+1 class
of the polynomial hierarchy, PH (Corollary 1).

3. We demonstrate that our formalization can be automated, using the rewriting logic
tool Maude to perform experiments verifying time-bounded resilience (Section 5).

Expository Example. In [1], our study of resilience was motivated by current research
into CPSs that perform complex, safety-critical tasks in hostile and unpredictable envi-
ronments, often autonomously. In this paper, we expand our perspective to consider re-
silience properties of a broad class of multi-agent systems. For expository purposes, we
utilize a running example of a researcher planning travel to attend and present research
at a conference. The system rules represent actions of the researcher, while update rules
represent travel disruptions and changes to the conference organization. Ultimately, the
travel planning process is pointless if the researcher does not arrive at his destination
in time for the main event. Consequently, the researcher desires to establish a resilient
plan, which will allow him to accomplish his goal in spite of some bounded number of
disruptions. Details of this planning scenario will be developed throughout Section 2,
and our Maude implementation in Section 5 will be used to analyze its resilience.

Outline. Section 2 reviews the timed MSR framework used in Section 3 to define
time-bounded resilience. In Section 4, we investigate the complexity of the verifica-
tion problem. Section 5 showcases our results on automated verification obtained using
Maude. In Section 6, we conclude with a discussion of related and future work.

2 Multiset Rewriting Systems

In this section, we review the framework of timed MSR models introduced in our pre-
vious work [21,23,24].

2.1 The Rewriting Framework
Terms and Formulas. We fix a finite first-order alphabet Σ with constant, function,
and predicate symbols, together with a finite set B of base types. Each constant is asso-
ciated with a unique base type, and we write ΣCons to denote the set of all constants in
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Σ. Each predicate symbolR (resp. function symbol f ) is associated with a unique tuple
type (resp. arrow type) b1 × . . .× bk (resp. b1 × . . .× bk → b), where b1, . . . , bk, b ∈ B
and k is the arity of R (resp. f ). We also assume that Σ contains a special predicate
symbol Time with arity zero (more on this later).

We fix sets VFO of (first-order) variables and G of ground constants, disjoint from
each other and from Σ, where each element in VFO ∪ G has an associated base type in
B. We further assume that VFO and G each contain countably infinitely-many elements
associated to each base type. These ground constants will be used later on to instantiate
variables “created” by rewrite rules. Terms over Σ are constructed according to the
grammar

t := x | c | f(t1, . . . , tk),
where x is in VFO, c is in ΣCons, f is a function symbol of type b1 × . . .× bk → b, and
each ti is a term of type bi for i ≤ k (in which case f(t1, . . . , tk) is a term of type b).
Ground terms over Σ are constructed similarly:

a := d | c | f(a1, . . . , ak),

where d is in G, c is inΣCons, f is a function symbol of type b1× . . .×bk → b, and each
ai is a ground term of type bi for i ≤ k (in which case f(a1, . . . , ak) is a ground term
of type b). We write GTerms for the collection of ground terms over Σ. If R is a predicate
symbol of type b1 × . . . × bk and t1, . . . , tk are terms of type b1, . . . , bk, respectively,
then R(t1, . . . , tk) is an atomic formula. Similarly, if a1, . . . , ak are ground terms of
type b1, . . . , bk, respectively, then R(a1, . . . , ak) is an atomic fact (or just fact).

Modeling Discrete Time. We fix a countably infinite set VTime = {Ti | i ∈ N} of time
variables. Timestamped atomic formulas are of the form F@(T + D), where F is an
atomic formula, T is a time variable, and D is a natural number; note that if D = 0,
we prefer to write F@T instead of F@(T + 0). Timestamped facts are of the form
F@t, where F is an atomic fact and t ∈ N is its timestamp. For brevity, we frequently
refer to timestamped facts simply as facts. Clearly, given a timestamped atomic formula
F@(T + D), we can obtain a timestamped fact G@t by setting G to be the result of
uniformly substituting ground terms for the variables in F and setting t = N +D.

Configurations and Rewrite Rules. Configurations are multisets of timestamped facts,
S = {Time@t, F1@t1, . . . , Fn@tn}, with a single occurrence of a Time fact, whose
timestamp is the global time in S. We write Values(S) to denote the set of all ground
terms and timestamps occurring in S. Configurations are modified by multiset rewrite
rules. Only one rule, Tick, modifies global time:

Time@T −→ Time@(T + 1) (1)

where T is a time variable. The Tick rule modifies a configuration to which it is applied
by advancing the global time by one. The remaining rules are instantaneous in that they
do not modify the global time but may modify the remaining facts of a configuration.
Instantaneous rules are given by expressions of the form

Time@T,W, F1@T1, . . . Fn@Tn | C
−→ Time@T,W, Q1@(T +D1), . . . Qm@(T +Dm)

(2)
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where W (the side condition of the rule) is a multiset of timestamped atomic formu-
las, Fi@Ti is a timestamped atomic formula for each i ≤ n, and Qj@(T + Dj) is
a timestamped atomic formula for each j ≤ m. The precondition of the rule is the
multiset {Time@T} ∪ W ∪ {Fi@Ti | i ≤ n}, while its postcondition is the multiset
{Time@T} ∪ W ∪ {Qj@(T + Dj) | j ≤ m}. We require that no atomic formula in
the multiset {Fi@Ti | i ≤ n} appears with the same multiplicity as it appears in the
multiset {Qj@(T +Dj) | j ≤ m}. Furthermore, no timestamped atomic formulas con-
taining the predicate Time can occur in {Fi@Ti | i ≤ n} ∪ {Qj@(T +Dj) | j ≤ m}.
The guard C of the rule is a set of time constraints of the form

T1 > T2 ±N or T1 = T2 ±N,

where T1 and T2 are time variables and N ∈ N is a natural number; all constraints in C
must involve only the time variables occurring in the rule’s precondition.

A ground substitution is a partial map σ : VFO ∪ VTime → GTerms ∪ N which maps
first-order variables to ground terms and time variables to natural numbers. Given a
multiset W of timestamped atomic formulas, we write Wσ to denote the multiset of
timestamped facts obtained by simultaneously substituting all first-order variables and
time variables in W with their image under σ. Given a set C of time constraints with
time variables from W , we say that Cσ is satisfied if each time constraint in C evalu-
ates to true for the substituted timestamps. Given a multiset W of timestamped atomic
formulas, we write Var(W ) to denote the set of first-order variables and time variables
occurring in W . Given an instantaneous rule r given by W | C −→ W ′, we write
Fresh(r) to denote the set Var(W ′) \ Var(W ).

A ground substitution matching an instantaneous rule r given byW | C −→W ′ to a
configuration S is a ground substitution σ with dom(σ) = Var(W ∪W ′) such that every
element of Var(W ) is matched to an element in Values(S), and the restriction of σ to
Fresh(r) is an injective map whose range is contained in G \Values(S). In other words,
σ assigns first-order variables (resp. time variables) occurring in W to ground terms
(resp. timestamps) occurring in S, and each distinct first-order variable in Fresh(r) to a
fresh ground constant which does not occur in S.

An instantaneous rule r given by W | C −→ W ′ is applicable to a configuration
S if there exists a ground substitution matching r to S such that Wσ ⊆ S and Cσ
is satisfied; in this case, we refer to the expression rσ given by Wσ | Cσ −→ W ′σ
as a instance of the rule r. The result of applying the rule instance rσ to S is the
configuration (S \Wσ)∪W ′σ. If W is the side condition of r, and T is the global time
in S, then we say that the timestamped facts occurring in (W \ (W ∪ {Time@T}))σ
are consumed, while those in (W ′ \ (W ∪ {Time@T}))σ are created. Note that a fact
for the predicate Time is never created by an instantaneous rule. We write S −→r S ′

for the one-step relation where the configuration S is rewritten to S ′ using an instance
of the rule r. It is worth emphasizing, at this point, that configurations are grounded,
while rewrite rules are symbolic.

Some examples. We now give some examples to elucidate our formalism. Consider
the alphabet containing the predicate symbols Time, At, Event, Attended, and FlightD
(where D ∈ {1, . . . , 12}), and the constant symbols no, done, main, airport, center,

163



id14, and id215. Recall that, in our expository example, we are modeling a researcher
with a goal of traveling to attend a conference. We interpret the timestamped atomic
formula FlightD(id, c1, c2)@T to mean that the flight with flight id id from city c1 to
city c2 departs at time T and has a duration of approximately D hours.

The timestamped fact At(FRA, center)@0 is interpreted to mean that the researcher
is at Frankfurt city center at the initial time step 0. For this scenario, each time step
is interpreted as the passage of one minute. For ease of readability, we adopt a more
convenient representation of timestamps, with 0 denoting midnight on the initial day
of the planning scenario. Then, we write Time@(3d 14:42) to indicate that the current
time is 14:42 on the 3rd day of the scenario. We do this is in lieu of writing the more
burdensome timestamp Time@5202. The fact Event(main, id215)@(5d 12:00) specifies
that the main event of the conference, with event identifier 215, will take place at noon
on the 5th day. Bringing this all together, consider the following configuration.

{Time@(3d 14:42),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main, id215)@(5d 12:00),Flight2(id14,FRA,DBV)@(3d 15:25)} (3)

This configuration describes a state of the system. The time is 14:42 on the 3rd day
of the scenario, and the researcher arrived at Frankfurt airport (FRA) at 14:05. The main
event of the conference is at noon in two days in Dubrovnik (DBV), and has, obviously,
not yet been attended by the researcher. Flight id14 is a direct flight from Frankfurt to
Dubrovnik, which departs at 15:25 and has a duration of approximately two hours.

In addition to modeling states of the system via configurations, we also want our
formalism to be able to model actions taken by the researcher, such as boarding a given
flight. To this end, consider the rule

Time@T,Flight2(a, x, y)@T1,At(x, airport)@T2, | T = T1, T2 + 30 ≤ T
−→ Time@T,Flight2(a, x, y)@T1,At(y, airport)@(T + 120),

(4)

with side condition {Flight2(a, x, y)@T1}. This rule means that if the departure time
of a two-hour flight with flight id a from city x to city y will depart at time T , and the
researcher is at the airport in city x at time T2, where T2 is at least 30 minutes prior to
T , then he can take the flight, arriving at the airport in city y after two hours.

Note that the rule (Eq. 4) is not applicable to the configuration (Eq. 3). In particular,
the time constraint T = T1 cannot be satisfied by any ground assignment for the rule
to the configuration. However, rule (Eq. 4) is applicable to the configuration resulting
from the successive application of 43 Tick rules to configuration (Eq. 3), which results
in the same configuration, except with the timestamp for Time updated to (3d 15:25)
(i.e., the departure time of the flight). Then the ground substitution σ given by

σ(T ) = 3d 15:25 σ(a) = id14

σ(T1) = 3d 15:25 σ(x) = FRA

σ(T2) = 3d 14:05 σ(y) = DBV

applied to the rule (Eq. 4) yields an instance which can be applied to configuration
(Eq. 3), resulting in the following configuration:

{Time@(3d 15:25),Attended(main, no)@0, At(DBV, airport)@(3d 17:25),
Event(main, id215)@(5d 12:00),Flight2(id14,FRA,DBV)@(3d 15:25)}. (5)
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Timed MSR Systems. We now turn to the timed MSR systems introduced in [24].

Definition 1. A timed MSR system A is a set of rules containing only instantaneous
rules (Eq. 2) and the Tick rule (Eq. 1).

A sequence of consecutive rule applications represents an execution or process
within the system. A trace of timed MSR rules A starting from an initial configura-
tion S0 is a sequence of configurations: S0 −→ S1 −→ S2 −→ · · · −→ Sn, such that
for all 0 ≤ i ≤ n− 1, Si −→ri Si+1 for some ri ∈ A. For our complexity results, we
assume traces are annotated with the rule instances used to obtain the next configuration
in the trace, so valid traces can be recognized in polynomial time (cf. Remark 4).

Reachability problems for MSR systems are reduced to the existence of traces over
given rules from some initial configuration to some specified configuration. Since reach-
ability problems are undecidable in general [24], some restrictions are imposed in order
to obtain decidability5. In particular, we use MSR systems with only balanced rules.

Definition 2 (Balanced Rules, [24]). A timed MSR rule is balanced if the numbers of
facts on left and right sides of the rule are equal.

Systems containing only balanced rules represent an important class of balanced sys-
tems, for which several variants of the reachability problem have been shown to be
decidable [23]. Balanced systems are suitable, e.g., for modeling scenarios with a fixed
amount of total memory. Balanced systems have the following important property:

Proposition 1 ([23]). Let R be a set of balanced rules. Let S0 be a configuration with
exactly m facts (counting multiplicities). Let S0 −→ · · · −→ Sn be an arbitrary trace
of R rules starting from S0. Then for all 0 ≤ i ≤ n, Si has exactly m facts.

2.2 Progressing Timed Systems

In this section, we review a particular class of timed MSR systems, called progressing
timed MSR systems (PTSs) [21,22], in which only a bounded number of rules can be
applied in a single time step. This is a natural condition, similar to the finite-variability
assumption used in the temporal logic and timed automata literature [18].

Definition 3 (Progressing Timed System, [21]). An instantaneous rule r of the form
in (Eq. 2) is progressing if the following all hold: i) n = m (i.e., r is balanced); ii) r
consumes only facts with timestamps in the past or at the current time, i.e., in (Eq. 2),
the set of constraints C of r contains the set Cr = { T ≥ Ti | Fi@Ti, 1 ≤ i ≤ n };
iii) r creates at least one fact with timestamp greater than the global time, i.e., in (Eq. 2),
Di ≥ 1 for at least one i ∈ {1, . . . , n}. A timed MSR system A is a progressing timed
MSR system (PTS) if all instantaneous rules of A are progressing.

Note that the rule (Eq. 4) is progressing. A timestamped fact in a configuration S is
a future fact if its timestamp is strictly greater than the timestamp of the Time@T fact
in S. Future facts are “not available” in the sense that they cannot be consumed by a
progressing rule before a sufficient number of Tick rule applications.

Remark 1. For readability, we assume the set of constraints for all rules r, contains the
set Cr, as in Definition 3, and do not always write Cr explicitly.

5 For a discussion of various conditions in the model that may affect complexity, see [23,24].
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2.3 Timed MSR for the specification of resilient systems

We now review additional notation for the purpose of specifying resilience, as intro-
duced in [1]. The resilience framework divides the system from an external entity, such
as the environment, regulatory authorities, or an adversary. We model various types of
disruptive changes to the system state or goals.

Definition 4 (Planning Configuration, [1]). Let ΣP = ΣG ⊎ ΣC ⊎ ΣS ⊎ {Time}
consist of four pairwise disjoint sets of predicate symbols, ΣG, ΣC , ΣS and {Time}.
Facts constructed using predicates fromΣG are called goal facts, fromΣC critical facts,
and fromΣS system facts. Facts constructed using predicates fromΣC ∪ΣG are called
planning facts. Configurations over ΣP predicates are called planning configurations.

For readability, we underline predicates in planning facts and refer to planning con-
figurations as configurations for short. The behavior of the system is represented by
traces of MSR rules. A system should achieve its goal while not violating predeter-
mined critical conditions. This is made precise in the following two definitions.

Definition 5 (Critical/Goal Configurations, [1]). A critical (resp. goal) configuration
specification CS (resp. GS) is a set of pairs {⟨S1, C1⟩, . . . , ⟨Sn, Cn⟩}, with each pair
⟨Sj , Cj⟩ being of the form ⟨{F1@T1, . . . , Fpj

@Tpj
}, Cj⟩, where T1, . . . , Tpj

are time
variables, W = {F1, . . . , Fpj

} is a multiset of timestamped atomic formulas, with
at least one occurrence of a critical (resp. goal) predicate symbol, and Cj is a set of
time constraints involving only variables T1, . . . , Tpj . A configuration S is a critical
configuration w.r.t. CS (resp. a goal configuration w.r.t. GS) if for some 1 ≤ i ≤ n,
there is a grounding substitution σ with dom(σ) = Var(W ) such that Siσ ⊆ S and Ciσ
is satisfied.

Definition 6 (Compliant Traces, [1]). A trace is compliant with respect to a critical
configuration specification CS if it does not contain any critical configuration w.r.t. CS .

Note that critical configuration specifications and goal configuration specifications,
like rewrite rules, are symbolic. Reaching a critical configuration may be interpreted
as a safety violation, while a compliant trace may be interpreted as a safe trace. As an
example, suppose that in the example alphabet introduced earlier, the predicate symbol
Attended is in ΣC , while the predicate symbol Event is in ΣG. Then the goal configu-
ration specification

{⟨{Attended(main, done)@T1,Event(main, x)@T2}, ∅⟩}

indicates that the main event should be attended, while the critical configuration speci-
fication

{⟨Time@T,Attended(main, no)@T1,Event(main, x)@T2}, {T > T2}⟩}

denotes that it is critical not to participate in the main event.
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Definition 7 (System Rules and Update Rules, [1]). Fix a planning alphabet ΣP . A
system rule is either the Tick rule (Eq. 1) or a rule of form in (Eq. 2) which does not
consume or create planning facts. An update rule is an instantaneous rule that is of
one of the following types: (a) a system update rule (SUR) such that planning facts can
only occur in the side condition of the rule; or (b) a goal update rule (GUR) that either
consumes or creates at least one goal fact and such that critical facts can only occur in
the side condition of the rule.

For example, the following system rule specifies that the traveler needs 40 minutes to
get from the departing city center to the airport:

Time@T, At(x, center)@T1 | T1 ≤ T

−→ Time@T,At(x, airport)@(T + 40).

The rule (Eq. 4) is another example of a system rule. System rules specify the be-
havior of the system, while disruptions are modeled via update rules. Intuitively, GUR
model external interventions in the system, such as mission changes, additional tasks,
etc., while SUR model changes in the system that are not due to the intentions of the
system’s agents, e.g., technical errors or malfunctions such as flight delays. Both goal
and system update rules can create and/or consume system facts, which technically sim-
plifies modeling the impact of changes on the system and its response. For example, the
following GUR models a change in the scheduled time of the main event.

Time@T, Event(main, x)@T1,−→ Time@T,Event(main, x)@(T + 60),

while the following SUR models a 30-minute flight delay:

Time@T,FlightD(a, x, y)@T1 −→ Time@T,FlightD(a, x, y)@(T + 30).

Definition 8 (Planning Scenario, [1]). If R and E are sets of system and update rules,
GS and CS are a goal and critical configuration specifications, and S0 is an initial
configuration, then the tuple (R,GS, CS, E ,S0) is a planning scenario.

Definition 9 (Progressing Planning Scenario (PPS)). We say that a planning scenario
(R,GS, CS, E ,S0) is progressing if all rules in R and E are progressing.

The progressing condition in Definition 9 bounds the number of rules that can be
applied in a single unit of time (cf. Proposition 2). We also assume an upper-bound on
the size of facts allowed to occur in traces, where the size of a timestamped fact F@T is
the number of symbols fromΣ occurring in F , counting repetitions. Without this bound
(among other restrictions), any interesting decision problem is undecidable [13,23]. We
also confine attention to classes of η-simple PPSs, defined below.

Definition 10. Let η denote a fixed positive integer. We say that a planning scenario
A = (R,GS, CS, E ,S0) is η-simple if the total number of variables (including both
first-order and time variables) appearing in each pair ⟨Si, Ci⟩ in CS is less than η.

For every planning scenarioA = (R,GS, CS, E ,S0), there exists some least η such that
A is η-simple; intuitively, this η is a measure of the complexity of verifying compliance
of traces with respect to CS . Proposition 4 in Section 4 makes this intuition precise.

Remark 2. By inspecting the rules and the critical configuration specification, it is easy
to check that our expository travel example is 3-simple and progressing.
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3 Time-bounded Resilience Verification Problems

In this section, we formalize time-bounded resilience as a property of planning scenar-
ios. Intuitively, we want to capture the notion of a system which can achieve its goal
within a fixed amount of time, despite the application of up to n instances of update
rules. An initial idea might be to require that the system can achieve its goal in the
allotted time, regardless of when updates are applied. However, this is too restrictive:
many systems will fail to achieve their goal in the face of adversarial actions which can
be applied at arbitrary times. Instead, the system will have a + b time units to achieve
its goal, and update rules can only be applied in the first a time steps; the last b time
steps are the recovery time afforded to the system.

Definition 11 (The (n, a, b)-resilience problem). Let a ∈ Z+ and b ∈ N. We define
(n, a, b)-resilience by recursion on n. Inputs to the problem are planning scenariosA =
(R,GS, CS, E ,S0). A trace is (0, a, b)-resilient with respect to A if it is a compliant
trace of R rules from S0 to a goal configuration and contains at most a+b applications
of the Tick rule. For n > 0, a trace τ is (n, a, b)-resilient with respect to A if

1. τ is (0, a, b)-resilient with respect to A, and
2. for any system or goal update rule r ∈ E applied to a configuration Si in τ , with

Si −→r S ′
i+1, where global time ti in Si satisfies di = ti − t0 ≤ a, there exists

a reaction trace τ ′ of R rules from S ′
i+1 to a goal configuration S ′ such that τ ′ is

(n− 1, a− di, b)-resilient with respect to A′ = (R,GS, CS, E ,S ′
i+1).

A planning scenarioA = (R,GS, CS, E ,S0) is (n, a, b)-resilient if an (n, a, b)-resilient
trace with respect to A exists. The (n, a, b)-resilience problem is to determine if a given
planning scenario A is (n, a, b)-resilient.

Figure 1 provides a visual depiction of Definition 11.

τ : S0
. . . Si

. . . Sk

τ ′ : S ′
i+1

. . . S ′

r

di (≤ a)

≤ a− di + b

Fig. 1: An (n, a, b)-resilient trace τ and an (n − 1, a − di, b)-resilient reaction trace
τ ′. The horizontal arrows correspond to system rule applications, while the downward-
facing arrow represents an update rule application. The configurations Sk and S ′ on the
far right are goal configurations.

The reaction trace τ ′ in Definition 11 can be interpreted as a change in the plan τ ,
made in response to an external disruption (i.e., the system/goal update rule r) imposed
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on the system. Note that it is this “replanning” aspect of our definition that intuitively
distinguishes it from the related notion of robustness.

Remark 3. In Definition 11, the global time t′ in S ′ satisfies t′ − t0 ≤ a + b; i.e.,
despite the application of n instances of update rules, an (n, a, b)-resilient trace reaches
a goal within a + b time units. Furthermore, observe that a trace is (n, a, b)-resilient
with respect to a planning scenario A if and only if it is (n, a, b′)-resilient with respect
toA for all b′ ≥ b. Similarly, all (n, a, b)-resilient traces with respect toA are (n′, a, b)-
resilient with respect to A for all n′ ≤ n.

It is worthwhile to note that Definition 11 can be seen as a modification of [1,
Definitions 9-10], in which (i) we include the parameters a and b, (ii) we consider both
system and goal update rules simultaneously, and (iii) the recoverability condition,
which is not mentioned in this work, is the total relation on configurations of A.

4 Computational Complexity of Time-Bounded Resilience

In this section, we state and prove our results on the computational complexity of the
time-bounded resilience problem defined in Section 3. To see this, we first state a known
bound on the number of instances of instantaneous rules appearing between two con-
secutive instances of Tick rules in a trace of only progressing rules.

Proposition 2 ([21]). Let R be a set of progressing rules, S0 an initial configuration
and m the number of facts in S0. For all traces τ of R rules starting from S0, let

Si −→Tick Si+1 −→ · · · −→ Sj −→Tick Sj+1

be any subtrace of τ with exactly two instances of the Tick rule, one at the beginning
and the other at the end. Then j − i ≤ m.

Proposition 2 guarantees that the size (n, a, b)-resilient traces of a progressing planning
scenario A are polynomially-bounded in the size of the input representation of A.

Proposition 3. Let A = (R,GS, CS, E ,S0) be a PPS and m be the number of facts in
S0. Then the length of any (n, a, b)-resilient trace of A is bounded by (a+ b+ 1)m.

In preparation for our (n, a, b)-resilience upper bound result (Theorem 1), we now
turn to the complexity of some fundamental decision problems pertaining to planning
scenarios. We only state the problems and their complexity for η-simple PPSs with facts
of bounded size; more detail can be found in the technical report [3].

Definition 12. The goal (resp. critical) recognition problem is to determine, given a
planning scenario A = (R,GS, CS, E ,S0) and a configuration S, whether or not S is
a goal (resp. critical) configuration w.r.t. GS (resp. CS); cf. Definition 5.

More broadly, we are interested in checking trace compliance.
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Definition 13. The trace compliance problem is to determine, given a planning sce-
nario A = (R,GS, CS, E ,S0) and a trace τ of R-rules starting from S0, whether or
not τ is compliant w.r.t. CS (cf. Definition 6).

They key observation, and the one underlying our restriction to η-simple PPSs (cf.
Definition 10), is that the trace compliance problem is tractable for this class.

Proposition 4. For η-simple planning scenarios, the trace compliance problem is in P.

Remark 4. If A = (R,GS, CS, E ,S0) is an η-simple PPS, and S a configuration with
the same number of facts as S0, then given an appropriate ground substitution, we can
verify in polynomial time in the size of A that S is a goal configuration w.r.t. GS . In the
proof of Theorem 1, for ease of exposition, we will also assume that these ground sub-
stitutions come with a pointer to the appropriate pair ⟨Si, Ci⟩ in GS to which the substi-
tution should be applied. Furthermore, given an arbitrary PPS A = (R,GS, CS, E ,S0),
if S is a configuration with the same number of facts as S0, then given an appropriate
ground substitution, we can verify in polynomial time in the size of A that S is a goal
configuration w.r.t. CS . Similarly, given an appropriate ground substitution, we can ver-
ify in polynomial time in the size of A that a rule r is applicable to S, and whether or
not S ′ is the result of this application.

We now turn our attention to the computational complexity of the (n, a, b)-resilience
problem. To establish our complexity results, we will utilize the quantifier-alternation
characterization of PH (cf. [2,37,34]), according to which a decision problem is in ΣP

n

(for n odd) if and only if there exists a polynomial-time algorithm M such that an input
x is a yes instance of the problem if and only if

∃u1∀u2∃u3 . . . ∀un−1∃un M(x, u1, . . . , un) accepts,

where the ui are polynomially-bounded in the size of x. We now establish an upper
bound on the complexity of the (n, a, b)-resilience problem (cf. Definition 11).

Theorem 1. For η-simple PPSs with traces containing only facts of bounded size and
all a ∈ Z+ and n, b ∈ N, there exists a decision procedure of complexity ΣP

2n+1 for the
(n, a, b)-resilience problem.

Proof. We show by induction on n that, for each a ∈ Z+ and b ∈ N, there exists a
polynomial-time algorithm Ma,b

n such that an η-simple PPS A = (R,GS, CS, E ,S0) is
(n, a, b)-resilient if and only if

∃T0∀ρ1∃T1 . . . ∀ρn∃Tn Ma,b
n (A, τ0, τ1, . . . , τn, ρ1, . . . , ρn) accepts. (6)

The existentially quantified variables Ti range over triples of the form (τi, σi, ji), where
τi is a trace of R-rules and σi is a ground substitution from ⟨Sji , Cji⟩ in GS to the last
configuration of τi. By Proposition 3, such a witness Ti is polynomially-bounded in the
size of the input representation of A. The universally quantified variables ρi range over
triples of the form (ri, σi, ji), where ri ∈ E and σi is a ground substitution from the jthi
configuration of τi−1 to the first configuration of τi. The witnesses ρi are also clearly
polynomially-bounded in the size of the input representation of A.
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For the base case, the algorithm Ma,b
0 first verifies that A meets the syntactic re-

quirements of an η-simple PPS. If so, then we verify, given T0 = (τ0, σ0, j0), that τ0
has at most a + b applications of the Tick rule, is compliant, and leads to a goal. By
Proposition 4, since τ0 is polynomially-bounded in A, we can verify compliance of τ0
in polynomial time in A. By Remark 4, we can verify in polynomial time in A, given
(σ0, j0), that the last configuration of τ0 is a goal. Hence Ma,b

0 (A, T0) runs in polyno-
mial time, and A is (0, a, b)-resilient if and only if ∃T0 Ma,b

0 (A, T0) accepts.
Now suppose inductively that we have, for each a′ ∈ Z+ and b′ ∈ N, algorithms

Ma′,b′

k satisfying (Eq. 6) with n = k. Fix some a ∈ Z+ and b ∈ N, and we define an
algorithm Ma,b

k+1 which takes inputs of the form (A, T , T ′, T1, . . . , Tk, ρ, ρ1, . . . , ρk).
Let T = (τ, σ, j), T ′ = (τ ′, σ′, j′), and ρ = (r, σ∗, i). Furthermore, let t0 denote the
global time in the initial configuration S0, |τ | denote the length of τ , S ′

i+1 denote the
initial configuration of τ ′, ti denote the global time in the ith configuration Si of τ , and
di = ti − t0. We now describe the run of Ma,b

k+1 on this input.
First, check that τ and τ ′ are compliant traces to a goal configuration. Then, check

if di ≤ a; if this check fails, then we halt and accept, since by Definition 11, up-
date rules cannot be applied after more than a time steps. Then, check if Si −→r

S ′
i+1, by applying the ground substitution σ∗ to r and checking that it is applica-

ble to Si. If this checks fails, then we halt and accept, since r is not an applicable
update rule to Si. Otherwise, check that S ′

i+1 is the correct result of applying this
instance of r to Si. If this check fails, then reject, since τ ′ cannot be a valid reac-
tion trace. Finally, let A′ = (R,GS, CS, E ,S ′

i+1), and simulate Ma−di,b
k on the input

(A′, T ′, T1, . . . , Tk, ρ1, . . . , ρk). If the result of this simulation is that Ma−di,b
k accepts

the input, then we halt and accept, since by the inductive hypothesis, τ ′ must be a
(k, a− di, b)-resilient reaction trace. Otherwise, we reject.

Taking into account the inductive hypothesis and Remark 4, it is clear that Ma,b
k+1

runs in polynomial time in the size of its input. Furthermore, it follows immediately by
inspection of Definition 11 that A is (k + 1, a, b)-resilient if and only if

∃T0∀ρ1∃T1 . . . ∀ρk+1∃Tk+1 M
a,b
k+1(A, T , T1, . . . , Tk+1, ρ, ρ1, . . . , ρk+1) accepts.

This concludes the inductive argument. It follows immediately from the quantifier-
alternation characterization of PH that the (n, a, b)-resilience problem for η-simple
PPSs with traces containing only facts of bounded size is in ΣP

2n+1. ⊓⊔

Remark 5. Even without assuming η-simplicity, a slight variation of the above argu-
ment gives a decision procedure of complexity ΣP

2n+2 for the (n, a, b)-resilience prob-
lem for PPSs with traces containing facts of bounded size. To modify the argument, we
allow each universal quantifier to range over an additional ground substitution, which
is used in the verification algorithm Ma,b

n to check that an arbitrary configuration in the
preceding witness trace is non-critical. Note that this check can be done in polynomial
time (cf. Remark 4). If this check succeeds for all configurations and all all such ground
substitutions, then every witness trace is compliant.

In fact, even for 1-simple PPSs, the (n, a, b)-resilience problem is ΣP
2n+1-hard. We

show this by a reduction from Σ2n+1-SAT, the language of true quantified Boolean for-
mulas (QBF) with 2n+ 1 quantifier alternations, where the first quantifier is existential
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and the underlying propositional formula is in 3-CNF form. This problem is known
to be ΣP

2n+1-complete [37]. Recall that the truth of a quantified Boolean formula can
be analyzed by considering the QBF evaluation game for the formula. In this game,
two players, Spoiler and Duplicator, take turns choosing assignments to the formula’s
quantified variables. Duplicator chooses assignments for existentially-quantified vari-
ables with the goal of satisfying the underlying Boolean formula, while Spoiler chooses
assignments for universally-quantified variables with the goal of falsifying it. The game
concludes once assignments have been chosen for all of the quantified variables. A QBF
ψ is true if and only if Duplicator has a winning strategy in this game [34].

In our reduction, we encode the positions of this QBF evaluation game into config-
urations, where a position of the QBF evaluation game for a formula

ψ := ∃v1∀v2∃v3 . . . ∀v2n∃v2n+1φ(v1, v2, v3, . . . , v2n+1)

is a sequence P = V1, . . . , Vj of assignments to the variables in v1, . . . , vj for some
j ≤ 2n+ 1. If j is even, then we say that the position P belongs to Duplicator; other-
wise, we say that it belongs to Spoiler. The player who owns a given position makes the
next move, choosing an assignment for the variables in the tuple vj+1. We use system
rules to model assignments made by Duplicator, while update rules are used to model
assignments made by Spoiler. Intuitively, the goal configurations are those positions of
the game which encode assignments satisfying the underlying formula φ.

Theorem 2. For all a ∈ Z+ and b ∈ N, there exists a polynomial-time reduction from
theΣ2n+1-SAT problem to the (n, a, b)-resilience problem. Furthermore, the computed
instance is always a 1-simple progressing planning scenario with traces containing only
facts of bounded size.

Proof (sketch). Let ψ := ∃v1∀v2∃v3 . . . ∀v2n∃v2n+1φ(v1, v2, v3, . . . , v2n+1) be an
instance of Σ2n+1-SAT, where the vi are tuples of variables and φ is a 3-CNF formula.
We can compute a 1-simple progressing planning scenario A = (R,GS, CS, E ,S0)
which is (n, a, b)-resilient if and only if ψ is true. To do this, the initial configuration
S0 contains 0-ary facts of the form Unki which indicate that the assignment to vi is
unknown, for each 1 ≤ i ≤ 2n + 1. We also include a 0-ary fact Rnd0 indicating that
no rounds of the QBF game have been played, and a 0-ary fact corresponding to each
clause of φ. This represents the initial position of the QBF evaluation game.

We include system (resp. update) rules corresponding to assignments to the vi tuples
of variables for even (resp. odd); these rules consume the fact Unki and create facts of
the form V ali(b), where b is a tuple Boolean values (true or false). These rules simu-
late moves of the QBF evaluation game, and change the configuration to represent the
next position of the game. Furthermore, each rule of this kind can only be played when
the appropriate Rndi fact is in the current configuration, and it increments the round
counter from Rndi to Rndi+1. This ensures that the players can only choose assign-
ments from positions that belong to them. We also include “verification” rules, which
are used to check if the assignment after the conclusion of the game (encoded by the
V ali facts) satisfies φ. The goal configurations are those in which the final assignment
has been verified to satisfy φ.
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This encoding does not depend on the parameters a and b of the resilience problem:
A admits an (n, 1, 0)-resilient trace if and only if it admits an (n, a, b)-resilient trace
for all a ∈ Z+ and b ∈ N. It follows easily from the simulation of the QBF evaluation
game that, for all a ∈ Z+ and b ∈ N, A is (n, a, b)-resilient if and only if Duplicator
has a winning strategy for the QBF evaluation game for the formula ψ. ⊓⊔

A detailed specification of the reduction can be found in the technical report [3]. Theo-
rems 1 and 2 immediately entail the following.

Corollary 1. The (n, a, b)-resilience problem for η-simple PPSs with traces containing
only facts of bounded size is ΣP

2n+1-complete.

5 Verifying Resilience in Maude

To experiment with resilience, we specified our running example of a travel planning
scenario in the Maude rewriting logic language [11]. In contrast to the multiset rewrit-
ing representation, the Maude specification uses data structures, not facts, to represent
system structure and state. The passing of time is modeled using rule duration. For ex-
ample, the rule that models taking a flight takes time according to the duration of the
flight. These rules combine an instantaneous rule with a time-passing rule. These de-
sign decisions, together with relegating as much as possible to equational reasoning,
help reduce the search state space.

In the travel system scenarios, the goal is to attend a given set of events. System
updates change flight schedules; goal updates either change event start time or duration,
or add an event. Execution traces terminate when the last event is attended or an event
is missed. Thus, for simplicity, we fix a+ b to be the end of the last possible event and
leave it implicit. In the following, we describe the representation of key elements of the
travel system specification: system state, execution rules, and updates. We then explain
the algorithm for checking (n, a, b)-resilience and report on some simple experiments.

Representing travel status. The two main sorts in the travel system specification are
Flight and Event. A term fl(cityD,cityA,fn,depT,dur) represents a flight,
where cityD and cityA are the departure and arrival cities, fn is the flight number
(a unique identifier), depT is the departure time, and dur is the duration. The de-
parture time and duration are represented by hour-minute terms hm(h,m). For sim-
plicity, flights are assumed to go at the same time every day, and all times are in
GMT. A flight instance (sort FltInst) represents a flight on a specific date by a term:
fi(flt,dtDep,dtArr) where flt is a flight, dtDep and dtArr are date-time terms
representing the date and time of departure and arrival respectively. A date-time term
has the form dt(yd,hm) where yd is a year-day term yd(y,d) and hm is an hour-
minute term as above.

An event is represented by a term ev(eid,city,loc,yd,hm,dur,opt), where
eid is a unique (string) identifier and the opt Boolean specifies if the event is optional;
the other arguments are as above. A term of the form {conf} (sort Sys), where conf
(sort Conf) is a multiset of configuration elements, represents a system execution state.
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The sorts of configuration elements are TConf, Log, and update descriptions. Terms of
sort TConf represent a traveler’s state, with one of three forms:

tc(dt,city,loc,evs) – planning
tc(dt,city,loc,evs,ev,fltil) – executing
tcCrit(dt,city,loc,evs,ev,reason) – critical

Here, dt is a date-time term, the travelers current date and time, and city tells what
city the traveler is currently in. The term loc gives the location within the city, either
the airport or the city center. The term evs is the set of events to be attended, while
ev is the next event to consider. The term fltil is the flight instance list chosen to get
from city to the location of ev. The constructor tcCrit signals a critical configuration
in which a required event has been missed.

An update description is a term of the form di(digs) or di(digs,n) where digs
is a set of digressions. Each digression describes an update to be applied by an update
rule, and n bounds the number of updates that can be applied. Two kinds of updates are
currently implemented: flight/system updates and event/goal updates. The flight updates
are: cancel, which cancels the current flight, delay(hm(h,m)), which delays the cur-
rent flight by h hours, m minutes, and divert(city0,city1), which diverts the cur-
rent flight from city0 to city1, where the current flight is the first element of the flight
instance list of an executing TConf term. The event/goal updates are: edEvS(hm(h,m),
which starts the current event h hours, m minutes earlier, edEvD(hm(h,m)), which ex-
tends the current event duration by h hours, m minutes, and addEv(eid), which adds
the event with id evid to the set of pending events.

Flight updates are only applied to the next flight the traveler is about to take. Sim-
ilarly, the changes in event start time or duration are only applied to the next event
to attend. This is a simplified setting, but sufficiently illustrates our formalism; more
complex variations are possible. Lastly, an element of sort Log is a list of log items.
It is used to record updates, flights taken, and events attended or missed. Among other
things, when searching for flights, it is used to know which flights have been canceled.

Rewrite rules. There are five system rules (plan, noUFlts, flt, event, and replan)
and two update rules (fltDigress and evDigress, for flight/system updates and
event/goal updates, respectively). The plan rule picks the event, ev, with the earli-
est start time from nevs and (non-deterministically) selects a list of flight instances,
fltil, from the set of flight instance lists arriving at the event city before the start
time. The set of possible flights is stored in a constant FltDB. log1 is log with an item
recording the rule firing added. The conditional if ... does the above computing.

crl [plan]: {tc(dt,city, loc, nevs) log}
=> {tc(dt, city, loc, evs0, ev, fltil) log1} if ...

The rule noUFlts handles cases in which there is no usable flight instance list given
the traveler time and location and the time and location of the next event. If ev is
optional then it is dropped (recording this in the log) and the rule plan is applied
to the remaining events; otherwise, the configuration becomes critical and execution
terminates. The rule flt models taking the next flight, assuming the flight departure
time is later than the traveler’s current time. This rule updates the traveler’s time to the
flight arrival time dtArr and traveler’s city to the destination city1. Then, the flight
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instance taken is removed from the list.
crl [flt]: {tc(dt, city0, airport, evs,ev,flti ; fltil) conf}
=> {tc(dtArr, city1, airport, evs,ev, fltil) conf1} if ....

The event rule (not shown) models attending the currently selected event. It can be
applied when the traveler city is the same as the event city and the current time is not
after the event start. As for the flight rule, the current time is updated to the event end
time and the traveler returns to the airport. If the traveler arrives at the event city too
late, as for the noUFlts rule, if the event is optional, the event rule drops the event
and enters a log item, otherwise it produces a critical TConf. The replan rule handles
the situation in which the traveler city is not the event city and the next flight, if any,
does not depart from the traveler city or has been missed. The pending flight instance
list is dropped, the event is put back in the event set, and a log item is added to the log.

The update rule fltDigress only applies if the digression counter is greater than
zero and the rule decrements the counter. A flight digression, fdig, is non-deterministi-
cally selected from the available digressions (the first argument to di).

crl [fltDigress]: {tconf di(fdig digs, s n) conf}
=> {tconf1 di(digs fdig,n) conf1}

if tc(dt, city0, airport, evs,ev, flti ; fltil) := tconf

∧ city0 =/= getCity(ev)

∧ tconf1 conf1 := applyDigression(tconf,conf,fdig)

The first condition exposes the structure of tconf to ensure there is a pending flight
to update. The auxiliary function applyDigression specifies the result of the up-
date. For example, the cancel update removes flti from the list and adds a log item
recording that this flight instance is cancelled. The case where the update description
has the form di(fdig digs) is similar, except here fdig is removed when applied,
and updating stops when there are no more update elements in the set. Similarly, the
rule evDigress non-deterministically selects an event digression from the configura-
tion’s digression set and applies the auxiliary function applyEvDigress to determine
the effect of the update. It only applies if the update counter is greater than zero, and
the TConf component has a selected next event.

A planning scenario is defined by an initial system configuration iSys, a database
of flights FltDB, a database of events EvDB, and an update description. A trace iSys

-TR-> xSys is a sequence of applications of rule instances from the travel rules TR,
leading from iSys to xSys. It is a compliant goal trace if xSys satisfies the goal con-
dition (goal) that the traveler configuration has no remaining events, and no required
events have been missed. Formally, the traveler component of xSys must have the form
tc(dt,city,loc,mtE), since, when a required event is missed, it is rewritten to a
term of the form tcCrit(dt,city,loc,evs,ev,comment).

Checking (n, a, b)-resilience. Checking (n, a, b)-resilience in the travel planning sys-
tem is implemented by the equationally-defined function isAbRes using Maude’s re-
flection capability and strategy language. As previously mentioned, the upper bound on
time is implicitly determined by the times and durations of available events, not treated
as a parameter.
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N: 1 2 3

2ev R? time R? time R? time

247 N 86ms - - - -
246 Y 81ms Y 147ms N 7476ms

3ev R? time R? time R? time

247 N 1400ms - - - -
246 Y 325ms Y 685ms NF -

(a) flight/system update rules

N: 1 2 3

2ev R? time R? time R? time

247 Y 78ms N 77ms - -
246 Y 98ms N 34800ms - -

3ev R? time R? time R? time

247 Y 143ms N 2627ms - -
246 Y 220ms Y 633ms Y 2634ms

(b) event/goal update rules
Fig. 2: Summary of (n, a, b)-resilience experiments

The function isAbRes checks (n, a, b)-resilience by first using metaSearch to find
a candidate goal state, then metaSearchPath gives the corresponding compliant goal
trace6 The candidate trace is converted to a rewrite strategy (representing the trace’s
list of rule instances). The function checkAbRes iterates through the initial prefixes of
the strategy, using metaSRewrite to follow the trace prefix. This implements a check
for reaction traces at all possible points of update rule application (cf. Definition 11).
For each state resulting from executing a prefix, the function checkDigs is called to
apply each one of the available updates, and then we invoke isAbRes to check for an
(n− 1, a− d, b)-resilient extension trace, where d is the number of time steps up to the
end of the prefix. If n is zero, abResCheck simply finds a compliant goal trace. If no
(n− 1, a− d, b)-resilient extension trace can be found, then the current candidate trace
is rejected, and isAbRes continues searching for the next candidate trace. If the search
for candidate traces fails, then the system under consideration is not (n, a, b)-resilient.
If the check for an (n−1, a−d, b)-resilient extension trace succeeds for every update of
every prefix execution, then the strategy is returned as a witness for (n, a, b)-resilience.
We tested (n, a, b)-resilience to flight/system updates and event/goal updates with in-
stances of the following command.
red isAbRes([’TRAVEL-SCENARIO],N,allDi,SYST,patT,tCond,uStrat,0).

red isAbRes([’TRAVEL-SCENARIO],1,allEv,iSysT,patT,tCond,ueStrat,0).

The results are summarized in Table 2. Note that N is the number of updates (1, 2, or
3), SYST is (the meta representation of) an initial state with a starting day that is as
late as possible to succeed if nothing goes wrong (247) or one day earlier (246) and
2 or 3 events. patT and tCond are the metaSearch pattern and condition arguments
and uStrat is used to construct the update rule strategy. In the summary tables the R?
indicates the result of isAbRes: Y for yes (a non-empty strategy is returned) and N for
no. A dash indicates the experiment not done (because the check fails for smaller N).
Lastly, allEv is the set of all implemented event update descriptions.

6 Conclusions and Related Work

We have shown that, for η-simple PPSs with traces containing only facts of bounded
size, the (n, a, b)-resilience problem is ΣP

2n+1-complete. In [1], we showed that the

6 Execution terminates if a critical state is reached, so paths to goal states are always compliant.
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version of this problem without time bounds is PSPACE-complete for balanced sys-
tems with traces containing only facts of bounded size. In addition to the formal model
and complexity results, we have implemented automated verification of time-bounded
resilience using Maude. Resilience has been studied in diverse areas such as civil en-
gineering [8], disaster studies [29], and environmental science [16]. Formalizations of
resilience are often tailored to specific applications [36,4,30,19,27] and cannot be easily
adapted to different systems. However, while we illustrated time-bounded resilience via
an example of a PPS modeling a flight planning scenario, our earlier work has studied
similar properties for a diverse range of other critical, time-sensitive systems, from col-
laborative systems subject to governmental regulations [24], to distributed unmanned
aerial vehicles (UAV) performing safety-critical tasks [21,22]. The strength of our for-
malism is its flexibility in modeling a wide range of multi-agent systems.

Interest in resilience, as well as other related concepts such as robustness [9], re-
coverability [22,32], fault tolerance [25], and reliability [5], has grown in recent years.
In [32], the authors introduced a notion of time-bounded recovery for logical scenar-
ios, which are families of system states represented by patterns whose variables are
constrained to describe an operating domain, and where recoverability is parameterized
by an ordered set of safety conditions. Intuitively, a t-recoverable logical scenario is
one which, when operating in normal mode, can recover from a lower-level safety con-
dition to an optimal safety condition within t time steps, without reaching an unsafe
condition. Like our formalization of resilience, t-recoverability concerns recovery from
a deviation from normal execution. The primary distinction in [32] is that deviations
are internal to the system, rules update the model state and compute control commands,
and enabled rules must fire before time passes, as is common in real-time systems.

Our definition of time-bounded resilience (Definition 11) can be seen as a modifica-
tion of [1, Definitions 9-10], with time parameters a and b and taking into account both
system and goal updates. Here, the recoverability conditions from [1] are simplified to
the total relation on configurations. Further investigation of recoverability conditions
and resilience with respect to update rules that consume or create critical facts is left for
future work. Another avenue of future work is to find conditions beyond η-simplicity
which allow for polynomial-time solvability of the trace compliance problem. We also
plan to study time-bounded resilience problems with respect to update rules that con-
sume or create critical facts, and other variations involving, e.g., real-time models and
infinite traces. We are interested in the relationship between resilience and other prop-
erties of time-sensitive distributed systems [22], such realizability, recoverability, reli-
ability, and survivability, as well as in specific applications of resilience, where further
implementation results could provide interesting insights.
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Abstract. We propose a language for conveniently defining execution
strategies for real-time rewrite theories, and provide Maude-strategy-
implemented versions of most Real-Time Maude analysis methods, albeit
with user-defined discrete and timed strategies. We also identify a new
time sampling strategy that should provide efficient and exhaustive anal-
ysis for many distributed real-time systems. We exemplify our language
and its analyses on a simple round trip time protocol, and compare the
performance of standard Maude search with our strategy-implemented
reachability analyses on the CASH scheduling algorithm benchmark.

1 Introduction

Real-time systems can naturally be defined in rewriting logic [22] as real-time
rewrite theories [29]. In such theories, actions that can be assumed to take zero
time are modeled by ordinary (also called instantaneous) rewrite rules, and time
advance is modeled by labeled “tick” rewrite rules of the form [l] : {t1} −→
{t2} in time τ if cond , where the whole system state has the form {t}.

Real-time rewrite theories inherit the expressiveness and modeling conve-
nience of rewriting logic, and allow us to model a wide range of distributed
real-time systems—with different communication forms, user-defined data types,
dynamic object creation and deletion, and so on—in an object-oriented style.

The specification and analysis of real-time rewrite theories is supported by
the Real-Time Maude language and tool [30,31,26], which is implemented in
Maude as an extension of Full Maude [12]. For dense time, the tick rules typically
have the form crl [tick] : {t} => {u} in time T if T <= f(t), where T is
a variable of sort Time not appearing in the term t [30].

Real-Time Maude provides explicit-state analysis methods, where the above
tick rules are executed according to a time sampling strategy, where the variable
T in the rule is always instantiated to either a user-selected value (such as 1) or
the maximal possible time increase f(t). Real-Time Maude supports unbounded
and time-bounded reachability analysis, LTL and timed CTL model checking,
and other time-specific analyses. All analyses are performed with the selected
time sampling strategy, and may not cover all possible system behaviors.

Real-Time Maude has been used to discover subtle but significant bugs in
a number of sophisticated systems beyond the scope of decidable formalisms
like timed automata, including: a 50-page active network protocol [32] (which
required advanced functions and detailed modeling of communication), a wireless
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sensor network algorithm [33] (involving functions on coverage areas), a mobile
ad-hoc network protocol [20] (the fault was due to a subtle interplay between
node movements and communication delays), scheduling algorithms with reuse
of unused budgets [28] (which required unbounded queues), a traffic intersection
system from the Ptolemy II library [5,18] (which required defining the semantics
of Ptolemy II discrete-event models), cloud-based transaction systems [16,8], and
an error in cars, where Real-Time Maude time sampling was key.3

Real-Time Maude’s expressiveness and generality have also allowed it to pro-
vide formal semantics and formal analysis capabilities to (subsets of) modeling
languages such as AADL [27], Ptolemy II DE models [5], Timed Rebeca [38],
and a DoCoMo Labs handset language [1].

In this paper we use Maude’s strategy language [15] to define useful strategies
for real-time rewrite theories. This work is motivated by the following issues:

1. Real-Time Maude analyses apply one of the above two time sampling strate-
gies to all applications of tick rules. However, as the following example shows,
more sophisticated time sampling strategies are often desired:
Consider a system computing the round trip time (RTT) between two nodes
every five seconds. A time sampling strategy that visits each time unit covers
all possible behaviors in discrete time domains, but visits each time point
even when the round trip time in that round already has been found. On
the other hand, increasing time maximally in each tick step only takes into
account behaviors where each message has been delayed as much as possible.
In this simple but prototypical example, the ideal time sampling strategy
advances time by one time unit when there is a message (which could arrive
at “any” time) in the state, and increases time maximally otherwise (when we
are just idling until the next iteration of the protocol). Such time sampling
would cover all possible behaviors, yet would not stop time unnecessarily.

2. The user may also want to define non-time-sampling execution strategies,
such as eagerness of all/some actions, or giving priority to some actions.

3. Maude’s strategy language has an efficient implementation, using multi-
threading and the option of depth-first search analyses, which provides better
performance than standard Maude search in some cases (see Section 5.6).

4. Real-Time Maude is implemented as an extension of Full Maude to support
object-oriented specification. Since Maude 3.3 supports object-oriented spec-
ification, and since Full Maude will no longer be maintained, we are working
on developing the next version of Real-Time Maude as a Maude implemen-
tation that does not extend Full Maude. In this context, doing as much as
possible as easily as possible using available Maude features is needed.

In this paper we therefore show how most Real-Time Maude analysis methods
can be performed by rewriting with strategies directly in Maude (Section 4).

However, even those analysis methods needed somewhat hard-to-understand
strategy expressions. This begs the question how the casual Maude user can an-
alyze her system with more complex discrete and time sampling strategies. Fur-
thermore, since Real-Time Maude provides formal analyses for many modeling
3 Hitoshi Ohsaki, personal communication, 2007.

182



Timed Strategies for Real-Time Rewrite Theories

languages, we need to allow the non-expert Maude user to define her strategies.
For example, in [4,3] we claim the ability to analyze the system with user-defined
execution strategies as a selling point of our Maude framework for parametric
timed automata and time Petri nets. However, this selling point becomes moot
if the timed automaton/Petri net expert cannot define her strategies.

To address this issue, in Section 5 we define and implement what we hope
is an intuitive and fairly powerful timed strategy language for real-time rewrite
theories. This language should make it easy for the casual user to define a wide
range of useful discrete strategies as well as advanced state- and even history-
dependent time sampling strategies in a modular way. In Section 5.6 we compare
the performance of standard Maude search with our strategy-implemented anal-
ysis methods on a sophisticated scheduling algorithm [28].

We discuss related work in Section 6, and give some concluding remarks in
Section 7. The strategy language, with Maude models and execution commands,
are available at [24]. Due to space restrictions, we only present parts of our
contribution in this paper, and refer to our report [25] for more detail.

2 Preliminaries

Rewriting Logic and Maude. Maude [13] is a rewriting-logic-based executable
formal specification language and high-performance analysis tool for distributed
systems. A Maude module specifies a rewrite theory (Σ,E,R), where:

– Σ is an algebraic signature; i.e., a set of sorts, subsorts, and function symbols.
– (Σ,E) is a membership equational logic [23] theory, with E a set of possibly

conditional equations and membership axioms.
– R is a collection of labeled conditional rewrite rules [l] : t −→ t′ if cond ,

specifying the system’s local transitions.

A function f is declared op f : s1 . . . sn -> s. Equations and rewrite rules are
introduced with, respectively, keywords eq, or ceq for conditional equations, and
rl and crl. Mathematical variables are declared with the keywords var and vars,
or can have the form var:sort and be introduced on the fly.

class C | att1 : s1, . . . , attn : sn declares a class C of objects with at-
tributes att1 to attn of sorts s1 to sn. An object instance of class C is represented
as a term <O : C | att1 : val1, . . . , attn : valn>, where O is the object’s identifier,
and where val1 to valn are the values of the attributes att1 to attn. A message is
a term of sort Msg. A system state is modeled as a term of sort Configuration,
and has the structure of a multiset made up of objects and messages.

Formal Analysis in Maude. Maude provides a number of analysis methods, in-
cluding rewriting for simulation purposes, reachability analysis, and linear tem-
poral logic (LTL) model checking. The command red expr reduces the expression
expr to its E-normal form. Given a state pattern pattern and an (optional) condi-
tion cond , Maude’s command search init =>* pattern [such that cond ] searches
the reachable state space from init for all (or optionally a given number of)
states that match pattern such that cond holds.
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Strategies. Maude provides a language for defining strategies to control and
restrict rewriting. A strategy may not make rewriting deterministic, and hence
multiple behaviors allowed by the strategy must be explored. The command
srew t using str rewrites the term t according to the strategy str, and returns a
set of terms, possibly bounded by the number of desired solutions. srew explores
multiple paths in parallel, and ensures that solutions will eventually be found.
dsrew t using str explores the behaviors allowed by str in a depth-first way.

Basic rewrite strategies include l[σ] (apply rule labeled l once with the op-
tional substitution σ), all (apply any of the rules, except those marked nonexec,
once), idle (identity), fail (empty set), and match pattern s.t. cond , which
checks whether the current term matches the pattern subject to the constraint
cond . Compound strategies can be defined using concatenation (α ;β), disjunc-
tion (α |β, whose result is the union of the results of α and β), iteration (α ∗),
α or-else β (execute α, and β if α fails), try(α) (applies α if it does not
fail), normalization α ! (execute α until it cannot be further applied), matchrew
p(x1, . . . , xn) s.t. cond by x1 using α1, . . . , xn using αn (if the term matches
the pattern p(x1, . . . , xn), then, for each match σ, rewrite each substitution in-
stance xiσ in the term according to the strategy αi), and so on [12].

Metaprogramming. Maude supports metaprogramming in the sense that a Maude
specification M can be represented as a term M (of sort Module), and a term t
in M can be (meta-)represented as a term t of sort Term. Maude’s META-LEVEL
module contains a number of useful meta-level versions of key Maude function-
ality, including metaSrewrite (srew and dsrew at the meta-level).

Real-Time Rewrite Theories and Real-Time Maude. Real-time systems can be
defined in rewriting logic as real-time rewrite theories [29], which are parametric
in the (discrete or dense) time domain. In such theories, ordinary rewrite rules
model instantaneous change, and time advance is modeled by “tick” rewrite rules
crl [tick] {t} => {u} in time τ if cond , where τ is a term of sort Time, t and
u are terms of sort System, the entire state has the form {s}, and {_} does not
occur in s; this ensures that time advances uniformly in the whole system.

Real-Time Maude [30,31,26] supports the modeling and analysis of real-time
rewrite theories. Most Real-Time Maude specifications have tick rules

crl [tick] : [t(x)] => {u(x, y)} in time y if y <= f(t(x)) /\ cond [nonexec] .

where y is a variable that does not appear in t and is not instantiated in cond ,
making the rule non-executable (nonexec) as it stands.

Real-Time Maude therefore offers the user the possibility of choosing between
the following time sampling strategies for executing such time-nondeterministic
tick rewrite rules:

– deterministic time sampling with a user-given time value δ > 0; and
– maximal time sampling, with a user-given “default” time value δ > 0.

Using deterministic time sampling, the variable y in the above tick rule is instan-
tiated by the selected time value δ in each application of a time-nondeterministic
tick rule; the tick rule cannot be applied to a state {s} if f(s) is smaller than δ.
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Using maximal time sampling, the variable y is instantiated to advance time
as much as possible, namely, by f(s) > 0 in state {s}, unless f(s) is the infinity
value INF, in which case y is instantiated with the “default” time value δ instead.

Real-Time Maude provides the following analysis methods, where the same
selected time sampling strategy is applied in all tick rule applications [30]:

– Rewriting up to time Λ.
– Time-bounded and untimed search for states matching a pattern p(x), such

that an optional condition cond(x ) holds, that are reachable from the initial
state (possibly within a given time interval [l, u]).

– Time-bounded and unbounded LTL model checking check whether each be-
havior from init , up to a given time bound in the time-bounded case, satisfies
an (untimed) linear temporal logic (LTL) formula.

– Timed CTL model checking checks whether each behavior, possibly up to a
user-given time bound, satisfies a given timed CTL formula [18].

– Find latest finds the longest time it takes to reach a desired state.
– Find earliest finds the shortest time needed to find the desired state.

In time-bounded Real-Time Maude analyses, internally the state also contains
the “system clock” denoting the time it takes to reach the corresponding state.

3 The Targeted Real-Time Rewrite Theories

This section presents assumptions about the real-time rewrite theories we con-
sider in this paper. Most large Real-Time Maude applications belong to this
class of real-time rewrite theories, or can easily be modified to do so (e.g., by
renaming rule labels and variables). We then present our running example as one
such model of a prototypical real-time system: a simple protocol for computing
the round trip times between pairs of senders and receivers in a network.

Assumptions. We specify our real-time rewrite theories directly in Maude by
extending the following “timed prelude,” which defines the sorts of our states:

fmod TIMED-PRELUDE is including TIME .
sorts System GlobalSystem ClockedSystem .
subsort GlobalSystem < ClockedSystem .

op {_} : System -> GlobalSystem [ctor] .
op _in time_ : GlobalSystem Time -> ClockedSystem [ctor] .

var CLS : ClockedSystem . vars T T' : Time .
eq (CLS in time T) in time T' = CLS in time (T plus T') .

endfm

We assume a sort Time for the time values, a supersort TimeInf adding an
infinity element INF to those values, and assume that each tick rule has the form

var T : Time .
crl [tick] : {t} => {u} in time T if T <= mte(t) /\ cond [nonexec] .
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or the form rl [tick] : {t} => {u} in time T [nonexec], where the symbols
in italics are placeholders for terms and conditions. In particular, we assume
that the unknown time advance is represented by the specific variable T (not
appearing in t nor in cond), that all tick rules are labeled tick, that no non-tick
rule is labeled tick, and that the maximal time elapse is given by the (user-
defined) function mte, which returns a time value or INF.

Running Example: Finding Round Trip Times. The following object-
oriented Maude model specifies a simple protocol for computing the round trip
time (RTT) between pairs of Senders and Receivers every 5 seconds. The delay
of a message can be any value between a lower and an upper bound. This small
example contains many features of larger real-time distributed protocols: clocks,
timers, and messages with nondeterministic delays.

omod RTT is
including TIMED-PRELUDE . protecting NAT-TIME-DOMAIN-WITH-INF .

var M : Msg . var TI : TimeInf . vars T T2 T3 : Time .
vars R S : Oid . vars C1 C2 STATE : Configuration .

sort DlyMsg . subsorts Msg < DlyMsg < Configuration < System .
op dly : Msg Time Time -> DlyMsg [ctor] . --- upper and lower bounds

rl [deliver] : dly(M, 0, TI) => M . --- deliver ripe message any time

msgs rttReq_from_to_ rttResp_from_to_ : Time Oid Oid -> Msg .

class Sender | clock : Time, timer : Time, lowerDly : Time, period : Time,
upperDly : TimeInf, rtt : TimeInf, receiver : Oid .

class Receiver | lowerDly : Time, upperDly : TimeInf .

rl [send] : < S : Sender | clock : T, timer : 0, period : T2,
lowerDly : T3, upperDly : TI, receiver : R >

=> < S : Sender | timer : T2 > dly(rttReq T from S to R, T3, TI) .

rl [respond] :
(rttReq T from S to R) < R : Receiver | lowerDly : T3, upperDly : TI >

=> < R : Receiver | > dly(rttResp T from R to S, T3, TI) .

rl [recordRTT] : (rttResp T from R to S) < S : Sender | clock : T2 >
=> < S : Sender | rtt : T2 monus T > .

crl [tick] : {STATE} => {timeEffect(STATE, T)} in time T
if T <= mte(STATE) [nonexec] .

op mte : Configuration -> TimeInf [frozen] .
eq mte(< S : Sender | timer : TI >) = TI .
eq mte(dly(M, T, TI)) = TI .
eq mte(M) = 0 . --- ripe message must be read immediately
... --- see our report for the other equations for mte and timeEffect
op timeEffect : Configuration Time -> Configuration .
eq timeEffect(< S : Sender | clock : T, timer : TI >, T2)
= < S : Sender | clock : T + T2, timer : TI monus T2 > .

eq timeEffect(dly(M, T, TI), T2) = dly(M, T monus T2, TI monus T2) .
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ops snd rcv : -> Oid [ctor] . op init : -> ClockedSystem .
eq init
= {< snd : Sender | clock : 0, timer : 0, period : 5000, lowerDly : 5,

upperDly : 20, rtt : INF, receiver : rcv >
< rcv : Receiver | lowerDly : 7, upperDly : 30 >} in time 0 .

endom

A Sender object has the following attributes: clock denotes its “local clock;”
timer denotes the time until its next round begins; lowerDelay and upperDelay
are bounds on the delays of messages from the sender; rtt stores the latest round
trip time value; period denotes its period; and receiver denotes its receiver. A
Receiver object has attributes for the delays of messages from the receiver.

A “delayed” message dly(m, t, t′) denotes a message m whose remaining
delay is in the interval [t, t′]. The rule deliver removes the dly wrapper, thereby
making the message “ripe,” whenever the lowest remaining delay has reached 0.

When a Sender’s timer expires (i.e., becomes 0), a new round of the RTT-
finding protocol starts (rule send). The Sender sends an rttReq message with its
current clock value T to the Receiver, and its timer is reset. When a Receiver
receives such a request, it replies with an rttResp message (rule respond).
When a Sender receives this response, with its original timestamp T, it can
easily compute and store the (latest) round trip time (rule recordRTT).

The tick rule in this system, which could have many Sender/Receiver pairs,
is the usual one for object-oriented Real-Time Maude specifications [30]. mte en-
sures that time cannot pass beyond the time when a message must be delivered,
that time cannot pass when there is a “ripe” (un-delayed) message in the state,
and that time cannot pass beyond the expiration time of any timer. The func-
tion timeEffect reduces the remaining bounds of all message delays and timer
values, and increases the clock values, according to the elapsed time.

init defines an initial state with one Sender and one Receiver.

4 Analysis Using Maude’s Strategy Language Directly

Our report [25] explains how we can perform “Real-Time Maude-style” time-
sampling-strategy-based (time-bounded, unbounded, and “clock-less” unbounded)
reachability analysis, as well as time-bounded simulation, using Maude’s strat-
egy language. Due to space restrictions, we just show timed-bounded reachability
with maximal time sampling, and refer to [25] for the other cases.

Example 1. We search for two states where the RTT value 50 can be found in
the time interval [5000, 10000] using maximal time sampling:4

Maude> srew [2] init using (all |
(matchrew CS:ClockedSystem

such that {STATE} in time T2 := CS:ClockedSystem /\ mte(STATE) =/= 0
/\ T2 + (if mte(STATE) == INF then 4 else mte(STATE) fi) <= 10000

by CS:ClockedSystem using

4 Parts of Maude code and Maude output will be replaced by ‘...’.

187



Carlos Olarte and Peter Csaba Ölveczky

tick[T <- if mte(STATE) == INF then 4 else mte(STATE) fi])) *
; (match {< snd : Sender | rtt : 50, ATTS:AttributeSet >

C:Configuration} in time T3:Time s.t. T3:Time >= 5000) .

Solution 1
result ClockedSystem:
{< snd : Sender | rtt : 50, ... > < rcv : Receiver | ... >} in time 5000

Solution 2 ...

The above strategy repeatedly (*) applies any rule, followed by (;) checking
whether the results match the pattern where the sender’s rtt attribute is 50 and
the “system clock” is greater than or equal to 5000. Regarding the application of
any rewrite rule, it either applies any executable rewrite rule (all) or (|) a tick
rule. If it is a tick rule, the variable T denoting the time increase is instantiated
to mte(STATE), for the given STATE obtained using matchrew, unless mte(INF)
equals INF, in which case T is set to 4. The tick rule is not applied if mte(STATE)
is 0, or if the system clock would go beyond the upper time limit 10000.

The same analysis can be performed with deterministic time sampling, say,
with increment 1, by replacing if mte(STATE) == INF then 4 else mte(STATE) fi
in the above expression with 1. We obtain unbounded reachability analysis by
removing the two tests for time limits above. Finally, for unbounded analyses,
we add the following rule, which removes the “system clock”, and always apply
this rule right after applying a tick rule:

rl [removeClock] : {STATE} in time T => {STATE} [nonexec] .

We mark this rule nonexec to allow us to control when it can be applied (e.g.,
it will not be applied by the strategy all). See [25] for details and examples.

5 A Strategy Language for Real-Time Rewrite Theories

Section 4 shows that even simple reachability analysis needs somewhat hard-
to-understand strategy expressions. How can the non-Maude-expert analyze her
system with more complex strategies? To address this question, this section
defines what we hope is a powerful yet intuitive timed strategy language for
real-time rewrite theories that supports: (1) separate definitions of strategies
for discrete behaviors, including the interplay between discrete actions and time
advance, and timed strategies; (2) state-dependent time sampling strategies and
conditional discrete strategies; (3) history-dependent strategies; and (4) intu-
itive syntax for “Real-Time Maude commands” with user-defined strategies.

Section 5.1 discusses execution strategies for both real-time systems in gen-
eral and real-time rewrite theories, and Section 5.2 introduces our strategy lan-
guage. Section 5.4 defines a formal semantics for our strategy language by trans-
lating its expressions into expressions in Maude’s strategy language. Sections 5.3
and 5.5 show how most Real-Time Maude analysis methods can be performed
using our strategy language. Section 5.6 compares the performance of our analy-
sis commands with standard Maude search on the CASH scheduling algorithm.
The executable Maude specification is available at [24].
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5.1 Strategies for Real-Time Systems

Interesting execution strategies of timed systems in general include:

1. Eagerness of certain (or all) actions: time should not advance when such
actions can be taken.

2. Advance time (or “idle”) by f(s) in all states s belonging to a set of states
S, advance time by g(s′) in all states s′ ∈ S′, and so on.

3. Do not perform action a more/less than x times.
4. Always execute action ai before action aj when both are enabled.

These examples indicate that we can consider three “types” of strategies: (i)
strategies on the “discrete behaviors” (such as items 3 and 4 above); (ii) strategies
on how much to advance time (item 2); and (iii) combining these (item 1). This
means that the user may want to specify a strategy restricting the discrete
behaviors of a system, as well as a strategy for how to advance time. Therefore,
we must be able to compose any discrete strategy with any timed strategy.

In Real-Time Maude, the selected time sampling strategy is used in all tick
rule applications. However, with maximal time sampling we may miss too many
behaviors, whereas with deterministic time sampling we may cover all possible
behaviors (for discrete time), but at the cost of “visiting” each time point, even
when the system is just “idling.”

An efficient time sampling strategy that covers all (interesting) behaviors for
discrete time is the following instance of item (2) above:

– increment time by 1 when an action could happen (in the next time instant);
– increment time maximally otherwise.

In the RTT system, we should increment time by 1 when there is a delayed
message in the state5, and maximally when there is no message in the state (and
the system is just idling until the next period begins). This suggests an efficient
time sampling strategy for a large class of distributed real-time systems [19].

5.2 Our Timed Strategy Language

A strategy ⟨µ, τ⟩ (of sort UStrat) in our timed strategy language consists of a
user-defined discrete strategy µ (of sort UDStrat), controlling the way instan-
taneous rules are applied and their interaction with time passage, and a timed
strategy τ (of sort UTStrat) defining a time sampling strategy:

sorts UStrat UTStrat UDStrat .
op <_,_> : UDStrat UTStrat -> UStrat .

The discrete strategy µ controls whether some (and if so, which) action/in-
stantaneous rule must be applied in the current state, or whether some tick
rule must be applied. The timed strategy τ defines exactly how each “tick rule
application” (i.e., each delay step) in the discrete strategy µ is applied.

5 A further optimization would advance time to when the least remaining delay is 0.
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We extend the global state of the system with a map that stores information
about the execution history. This allows us to define history-dependent strategies,
i.e., strategies that depend on the current and the previously visited states:

sort StrState .
pr MAP{K, V} * (sort Entry{K, V} to Entry, sort Map{K, V} to Map) .
op _|_ : ClockedSystem Map -> StrState .

The sorts K and V for the keys and their values are user-defined.

Discrete Strategies. Discrete strategies are defined using the following syntax.

sorts Interval SCond . --- Intervals and conditions
op [_,_] : Time Time -> Interval .
op matches_s.t._ : ClockedSystem Bool -> SCond .
op matches_s.t._ : StrState Bool -> SCond .
op matches_s.t._ : Map Bool -> SCond .
op matches : ClockedSystem -> SCond .
op in_ : Interval -> SCond .
ops after before after= before= : Time -> SCond .
ops _/\_ _\/_ : SCond SCond -> SCond .
op not_ : SCond -> SCond .
--- User-defined strategies
op apply_ : Qid -> UDStrat .
ops apply[_] eager[_] : QidList -> UDStrat .
ops action delay eager stop skip : -> UDStrat .
ops _;_ _or_ _or-else_ : UDStrat UDStrat -> UDStrat .
op if_then_else_ : SCond UDStrat UDStrat -> UDStrat .
op get_and set_ : Map Map -> UDStrat .

Terms of sort SCond define conditions in some of the strategies. The condition
matches P s.t. C, where P is a pattern and C is an (optional) Boolean condi-
tion, checks whether the current state matches P so that C holds in the state.
The pattern P can be a ClockedSystem, or a StrState (a clocked system ex-
tended with a Map). Other basic conditions include checking whether the current
value t of the global clock satisfies: t ∈ [a, b] (in [a , b]), t > t′ (after t′), t ≥ t′

(after= t′), t < t′ (before t′), and t ≤ t′ (before= t′). Larger conditions can be
constructed using conjunction, disjunction, and negation.

User-defined discrete strategies are: apply ℓ applies the instantaneous rule
with label ℓ once; apply [L] applies once the first rule in the list of labels L
that succeeds in the current state (i.e., L defines a priority on the next rule to
be applied); action applies any instantaneous rule once; delay applies a tick
rule once; eager applies the instantaneous rules as much as possible, followed
by one “delay” when it is possible; eager [L] applies as much as possible the
rules in the list L followed by one “delay”; µ ; µ′ is the sequential composition
of two strategies; µ or µ′ returns the union of the results obtained from the
strategies µ and µ′; µ or-else µ′ applies µ, but applies the strategy µ′ if µ fails;
if ϕ then µ else µ′ is the conditional strategy; stop is the strategy that always
fails; skip leaves the current state unchanged; and get M and set M ′ uses the
pattern M to retrieve (part of) the map storing information about the execution
of the strategy and updates it according to M ′.

Time Sampling Strategies. Time sampling strategies are defined as follows:
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sorts CTStrat LCTStrat . subsort CTStrat < LCTStrat .
op fixed-time_ : Time -> UTStrat .
op max-time with default_ : Time -> UTStrat .
op when_do_ : SCond UTStrat -> CTStrat .
op switch_otherwise_ : LCTStrat UTStrat -> UTStrat .

fixed-time t advances the time by time t in each application of a tick rule
(when advancing time by that amount is possible). max-time with default t ad-
vances time in a tick rule application by the maximal time t′ possible for that
tick rule, and advances time by t if t′ is INF. The conditional time sampling
strategy switch cases otherwise τ , where cases is a list of choices of the form
when ϕj do τj , executes the first strategy τi whose guard ϕi holds in the current
state; the strategy τ is applied if none of the guards hold.

Example 2. The basic strategy < delay or action , τ >, for any timed strat-
egy τ , applies any enabled rule once, and < eager ; τ > prioritizes the ap-
plication of instantaneous rules over tick rules. We can give preference to the
rules send and respond, then to the other actions, and finally to the tick rule:

< (apply ['send 'respond] or-else action or-else tick, τ >

Regarding the time sampling strategy for our RTT example, for any discrete
strategy µ, a good choice for this system is: if there is a delayed message in
the state, increase time by 1, otherwise increase time maximally. This state-
dependent time sampling strategy can be defined as follows:

< µ, switch when matches ({CONF dly(M, T1, T2)} in time R) do fixed-time 1
otherwise max-time with default 1 >

We could save bandwidth by not performing the RTT-finding procedure in
each period. We therefore add the following rule to the module RTT; this rule
allows a Sender to skip a round of the protocol by just resetting the timer when
it expires (instead of also sending an rttReq message):

var S : Oid . vars T T2 : Time .
rl [skipRound] : < S : Sender | timer : 0, period : T2 >

=> < S : Sender | timer : T2 > .

When its timer expires, a sender nondeterministically chooses between executing
a round of the protocol (rule send) or skipping one round (rule skipRound).

A sensible strategy is to skip some rounds but never skip more than two
rounds in a row. To define this state- and history-dependent strategy, we use a
counter labeled with 'C to avoid skipping “more than two rounds”:

< delay or
if matches {< S : Sender | timer : 0, ATTS >} in time T --- State dep.
then if (matches ('C |-> N) s.t. N <= 1) --- History dependent

then apply 'skipRound ;
(get ('C |-> N) and set ('C |-> N + 1)) --- Skip and increment

else apply 'send ;
(get ('C |-> N) and set ('C |-> 0)) --- Send and reset

else action ) , τ >
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5.3 User-Friendly Analysis Commands

A user-defined strategy ⟨µ, τ⟩ controls “one round” of the execution of the system.
In this section we provide convenient “Real-Time Maude-like” syntax for most
simulation, reachability and other formal analysis methods provided by Real-
Time Maude, albeit executed with user-defined strategies. For that, user-defined
strategies and user-defined time-sampling strategies are extended as follows.

Discrete strategies (of sort DStrat), besides the basic user-defined discrete
strategies, include: the strategy check ϕ that fails if ϕ does not hold in the
current state; the conditional repetition of a given strategy until ϕ do µ; the
strategy repeat µ that iteratively executes µ until it fails; and the strategy
n steps with µ that repeats n times µ. Overloaded operators for the sort DStrat
(e.g., op _;_ ... [ditto]) are also defined and omitted here.

sort DStrat . subsort UDStrat < DStrat .
op check_ : SCond -> DStrat .
op until_do_ : SCond DStrat -> DStrat .
op repeat_ : DStrat -> DStrat .
op _steps with_ : Nat DStrat -> DStrat .

General timed strategies (of sort TStrat) extend user-defined time sampling
strategies with a new case, used later to define untimed reachability analysis:

sort TStrat . subsort UTStrat < TStrat .
op untime : TStrat -> TStrat .

untime τ applies τ and then the rule removeClock, thus removing the global
clock from the current state. These new strategy constructors are defined as
Maude strategies as shown in Figure 1d.

Commands. We define a convenient syntax for Real-Time Maude-like analysis
commands using strategies. Given a user-defined strategy ⟨µ, τ⟩, we define a
strategy ⟨µ′, τ ′⟩ that implements such an analysis command by rewriting (using
metaSrewrite) an initial state init and returning a list of ClockedSystems (the
solutions). We refer to [25] for our time-bounded simulation command.

Unbounded and time-bounded reachability commands are defined as:

op tsearch [_] in_:_=>_using_with sampling_ :
Nat Qid StrState SCond DStrat TStrat -> LClockedSystem .

op tsearch [_] in_:_=>_using_with sampling_in time_ : ... -> ... .

tsearch [n] in R : init => ϕ using µ with sampling τ returns the first n states
that result from init by rewriting with the strategy ⟨repeat µ ; check ϕ, τ⟩,
i.e., repeat µ zero or more times and, on the resulting term, check ϕ. Time-
bounded reachability analysis tsearch [n] in R : init => ϕ using µ with
sampling τ in time [a,b] is implemented as the extended strategy
⟨repeat (if after(b) then stop else µ) ; check(ϕ ∧ in [a, b]), τ⟩.

“Depth-bounded” versions of the form tsearch [n,d] ... of the above com-
mands are also available. Furthermore, similar commands dsearch are defined
where metaSrewrite is invoked with the flag depthFirst, thus exploring the
rewriting graph in a “depth-first” manner.

Untimed reachability analysis is possible with the command
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op usearch [_] in_:_=>_using_with sampling_ :
Nat Qid StrState SCond DStrat TStrat -> LClockedSystem .

The implementation of this command is similar to the one for tsearch but
the sampling strategy used is untime(τ): after each tick, the global clock is
removed from the state. A depth-first version dusearch is also available.

Finding the longest and the shortest time it takes to reach a desired state is
supported by the following commands:

op find latest in_:_=>_using_with sampling_ :
Qid StrState SCond DStrat TStrat -> LClockedSystem .

op find earliest in_:_=>_using_with sampling_ : ... -> LClockedSystem .

find latest uses metaSrewrite to find all the solutions when rewriting the
initial state with the strategy ⟨until ϕ do µ ; check ϕ , τ⟩. This finds the
first state in all the branches of the search tree that satisfies ϕ. We then post-
process the returned list to find the state with the greatest global clock value.
This command may not terminate if there is a branch where ϕ never holds.

For find earliest, let t be the global clock value in the first state found
when applying the strategy ⟨until ϕ do µ ; check ϕ , τ⟩. Then, the strategy
⟨until ψ do (if after(t) then stop else µ) ; check ψ , τ⟩, where ψ =
ϕ ∧ before(t), is applied to find a new solution whose global clock is strictly
smaller than t. This procedure is repeated until no further solutions are found.

5.4 Semantics of Our Timed Strategy Language

This section shows how expressions in our timed strategy language can be trans-
lated into expressions in Maude’s strategy language. The denotational and op-
erational semantics of the latter [15] therefore formally describes the execution
of real-time rewrite theories controlled by a timed strategy ⟨µ, τ⟩.

We define a map [[−]] from terms of sort UStrat to terms of sort Strategy,
the sort in Maude’s prelude used to meta-represent strategies.

Definition 1 (Semantics). The interpretation of conditions ([[−]]b), time sam-
pling strategies ([[−]]t), and real-time strategies ([[−]]), as terms of sort Strategy,
is given in Figure 1. These definitions use the following variables, and require
the new operator and rule below:

vars M M' M'' : Map . var CS : ClockedSystem . var SS : StrState .
var B : Bool . vars Te Te' : Term . vars T T' T1 T2 : Time .
var C : SCond . var LC : LCTStrat . var S : System .
op matching_s.t._ : Term Term -> SCond .
rl [updateMap] : CS | (M, M') => CS | (M, M'') [nonexec] .

In Figure 1, t denotes the meta-representation of a term t (upTerm(t)). For
instance, the second case in Figure 1a must be read, and specified in Maude as:
[[matching CS s.t. B]]b = [[matching ‘_|_[CS, ‘M:Map ] s.t. B]]b

eq enc(matching CS s.t. B) =
enc(matching '_|_[upTerm(CS), 'M:Map] s.t. upTerm(B)) .
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[[matches SS s.t. B]]b = [[matches SS s.t. B]]b

[[matches CS s.t. B]]b = [[matches CS | M s.t. B]]b

[[matches M s.t. B]]b = [[matches CS | (M , M’) s.t. B]]b

[[matches Te s.t. Te’]]b = match Te s.t. Te’

[[after(T)]]b = [[match { CS } in time T’ s.t. T > T’]]b

[[ϕ1 ∧ ϕ2]]b = [[ϕ1]]b ; [[ϕ2]]b [[ϕ1 ∨ ϕ2]]b = [[ϕ1]]b or-else [[ϕ2]]b

[[not ϕ]]b = not [[ϕ]]b

(a) Conditions. Definitions for before, in, etc., are similar and are omitted.

[[fixed-time T1]]t = ’tick [ T ← T1 ] { empty }

[[max-time with default T1]]t = matchrew SS s.t. { S } in time T2 | M := SS

by SS using ’tick [T← if INF == mte(S) then T1 else mte(S) fi ] { empty }

[[switch (when C do τ) LC otherwise τ ′]]t = [[C]]b ? [[τ ]]t : [[switch LC otherwise τ ′]]t

[[switch (when C do τ) otherwise τ ′]]t = [[C]]b ? [[τ ]]t : [[τ ′]]b

(b) Timed strategies.

[[⟨stop , τ⟩]] = fail [[⟨skip , τ⟩]] = idle [[⟨apply Q, τ⟩]] = Q [none] {empty}

[[⟨action, τ⟩]] = all [[⟨delay, τ⟩]] = [[τ ]]t [[⟨eager, τ⟩]] = all ! ; try([[τ ]]t)

[[⟨apply [nil], τ⟩]] = fail [[⟨apply [Q LQ], τ⟩]] = apply Q or-else [[apply [LQ]]]

[[⟨eager [L], τ⟩]] = [[⟨apply [L], τ⟩]] ! : try([[τ ]]t)

[[⟨µ ; µ′, τ⟩]] = [[⟨µ, τ⟩]] ; [[⟨µ′, τ⟩]] [[⟨µ or µ′, τ⟩]] = [[⟨µ, τ⟩]] | [[⟨µ′, τ⟩]]

[[⟨µ or-else µ′, τ⟩]] = [[⟨µ, τ⟩]] or-else [[⟨µ′, τ⟩]]

[[⟨if C then µ else µ′, τ⟩]] = [[C]]b ? [[⟨µ, τ⟩]] : [[⟨µ′, τ⟩]]

[[⟨get M’ and set M”, τ⟩]] = matchrew SS s.t. { S } in time T1 | (M, M’) := SS

by SS using ’updateMap [ M← M ; M’← M’ ; M”← M” ] { empty }

(c) Discrete and real-time strategies.

[[⟨check ϕ, τ⟩]] = [[ϕ]]b [[⟨until ϕ do µ, τ⟩]] = ([[ϕ]]b ? fail : [[⟨µ, τ⟩]])!

[[⟨repeat µ, τ⟩]] = [[⟨µ, τ⟩]]) * [[⟨0 steps with µ, τ⟩]] = idle

[[⟨s(N) steps with µ, τ⟩]] = [[⟨µ, τ⟩]]) ; ⟨N steps with µ, τ⟩

[[untime τ ]]t = [[τ ]]t ; ’removeClock [ none ] { empty }

(d) General timed strategies.

Fig. 1: Interpretation of real-time strategies as Maude’s strategies.
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The Maude strategy [[ϕ]]b fails when the condition ϕ does not hold, and
succeeds (without modifying the current state) otherwise. matches expressions
are reduced until their parameters are of sort Term. Then, Maude’s strategy
match is used to check whether the current state matches the pattern and satisfies
the given condition (otherwise, match fails).

The Maude strategy [[τ ]]t applies the tick rule by instantiating the variable
T with the needed substitution according to τ . In max-time, Maude’s strategy
matchrew is used to do pattern matching and bind the variable S with the
current configuration. Hence, the call mte(S) determines the next tick value.
The definition of switch uses the conditional Maude strategy α ? β : γ to
choose the right time sampling strategy τi.

The Maude strategy [[⟨µ, τ⟩]] fails when µ = stop and does nothing if µ =
skip. If µ = apply Q, the rule with label Q is applied, without any substitution
([none]) and with the {empty} list of strategies (since no particular strategy is
used to solve rewrite expressions in conditional rules). Maude’s strategy all non-
deterministically chooses, and applies once, one of the executable rewrite rules.
Therefore, when µ = action, only executable instantaneous rules are applied.
The strategy [[apply [L]]] tries, in order, the instantaneous rules in the list L.
When µ = delay, the strategy [[τ ]]t is executed. The normalization operator all !
applies all until it cannot be further applied. Hence, when µ = eager, all the
instantaneous transitions are (nondeterministically) applied as much as possible,
followed by a tick, if possible. The interpretation of the strategies _;_, _or_-
, _or-else_ and if_then_else uses the corresponding constructors in Maude’s
strategy language. In the case µ = get M’ and set M”, Maude’s matchrew is
used to bind M ′ with the needed entries in the map storing information about
the execution of the strategy. Then, the execution of the rule updateMap replaces
the values in M ′ with the corresponding ones in M ′′.

5.5 Example: Analyzing the Round Trip Time Protocol

We illustrate the use of our timed strategy language on the RTT example; ad-
ditional examples are given in our longer report [25].

We check whether it is possible to reach two states with RTT value 20 with
the optimal “mixed” time sampling strategy that visits each time instant when
there is a message in the system, and uses maximal time sampling otherwise:

Maude> red tsearch [2] in 'RTT : init =>
matches ({CONF < S : Sender | rtt : 20, ATTS >} in time R:Time)

using delay or action with sampling
(switch when matches ({CONF dly(M, T1, T2)} in time R':Time)
do fixed-time 1 otherwise max-time with default 1) .

result NeList{ClockedSystem}:
({< snd : Sender | rtt : 20, ... > ... } in time 20)
({< snd : Sender | rtt : 20, ... > ... } in time 5000)

Time-bounded search for RTT 20 with maximal time sampling finds no solution:

Maude> red tsearch [2] ... => matches ... rtt : 20 ... using delay or
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action with sampling max-time with default 4 in time [5000, 10000] .

result LClockedSystem: (nil).LClockedSystem --- (No solution)

We then check the longest and shortest time needed to record an RTT value
different from 0 and INF (rtt?(STATE)) for the first time in each behavior:

Maude> red find earliest in 'RTT : init => matches ({STATE} in time T2)
s.t. (rtt?(STATE)) using action or delay with sampling fixed-time 1 .

result ClockedSystem: {< snd : Sender | rtt : 12, ... > ... } in time 12

Maude> red find latest in 'RTT : ... with sampling fixed-time 1 .

result ClockedSystem: {< snd : Sender | rtt : 50, > ... } in time 50

Let µ be the history-dependent strategy in Example 2 using the rule skipRound.
This strategy covers all interesting behaviors (avoiding the second round of RTT)
and it explores 126 states in the interval [0,10000]:

Maude> red size(tsearch in 'RTT : init => matches ({STATE} in time T2)
using µ with sampling max-time with default 4 in time [0, 100000]) .

result NzNat: 126

A similar command using the strategy action or delay reports 162 states.

5.6 Benchmarking

We compare the performance of our strategy-based analysis methods with stan-
dard Maude search on a variation of the CASH scheduling algorithm developed
by Marco Caccamo at UIUC [11]. The idea of CASH is that some jobs may not
need all the execution times allocated to them. These unused clock cycles are
put in a queue for other jobs to use. CASH is a sophisticated algorithm, with
sporadic tasks (i.e., a job could arrive at any time), unknown length of each job,
and a queue of unused execution times. Real-Time Maude analysis discovered
the previously unknown fact that hard deadlines could be missed [28].

We transform the Real-Time Maude specification of the CASH protocol into
a “standard” Maude model by incrementing time by one unit in the tick rules
(see [24]). We can therefore use Maude’s search command to find whether it is
possible to reach a state where a deadline is missed within time 12:6

Maude> search [1] init =>* {DEADLINE-MISS CONF} in time T s.t. T <= 12 .

Solution 1 (state 599272)
rewrites: 34093729 in 14910ms cpu (14937ms real) ...

The tsearch and dtsearch (depth-first search) commands in our language
that correspond to this time-bounded reachability query are executed as follows:

Maude> red tsearch [1] in 'CASH : init =>
matches ({DEADLINE-MISS CONF} in time T)

6 Here init denotes an initial state from which a missed deadline should not be
reachable if the optimized version of CASH were correct.
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using delay or action with sampling fixed-time 1 in time [0, 12] .

rewrites: 44 in 19517ms cpu (19538ms real) ...

Maude> red dtsearch [1] ... in time [0, 12] .

rewrites: 44 in 2079ms cpu (2083ms real) ...

We also perform unbounded reachability analysis with Maude’s search, and
the commands tsearch and usearch. (dtsearch in this case did not terminate).
Maude’s search command, without constraints on the system clock, finds the
missed deadline in 15 seconds. Unbounded tsearch needed 22 seconds, and
usearch, which removes the system clock after each tick step, needed 9.8 sec-
onds. For an even more optimized Maude search, we also modified our Maude
specification by manually removing the “in time ...” part of each tick rule,
so that the state does not carry the system clock. In that case, Maude search
terminates in 4.5 seconds.

All experiments were run on a Dell XPS 13 laptop (with an Intel i7 processor
@ 1.30GHz and 16GB of RAM). For time-bounded reachability, tsearch (19.5
seconds) is not much slower than Maude’s search (15 seconds) on a Maude model
where the deterministic time sampling strategy with increment 1 is hard-coded in
the tick rule (and no meta-level procedure is used as in tsearch). Furthermore,
our “depth-first” search command dtsearch significantly outperforms Maude’s
search command on this application (2 seconds).

In the unbounded case, it is fair to compare tsearch (22 seconds), which car-
ries the system clock, to the Maude search which took 15 seconds, and usearch
(9.8 seconds) to the Maude search of the manually modified model without the
system clock (4.5 seconds). All in all, our strategy-implemented commands are
reasonably close to Maude search, and in one case even significantly faster.

Because of the massive time-nondeterminism in the model (jobs can arrive at
any time and may execute for an any amount of time), we must use deterministic
time sampling with increment 1 for CASH. The performance should be much
better on systems such as RTT where we should use mixed time sampling to
“ignore” idling states where not much can happen. Although the preliminary
results are promising, we should do more thorough benchmarking in future work.

6 Related Work

Uppaal Stratego [14] extends the timed automaton tool Uppaal [7] with
strategies and model checking under such strategies, where strategies are Up-
paal queries. Uppaal Stratego seems to be used mainly in connection with
synthesis of controller strategies. We target a more expressive formalism, provide
a language for specifying actual strategies instead of queries, and also provide
time sampling strategies, but we do not support synthesizing strategies.

Different strategy languages have been proposed to cope with the nondeter-
minism in rewriting. Examples of such languages include ELAN [9], Stratego
[10], and ρLog [21]. Applications of Maude’s strategy language [15] include the
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analysis neural networks [39], membrane systems [37], and the specification of
semantics of programming languages [17] and process calculi [34]. Our previous
work [2,3,4] represents, to the best of our knowledge, the first applications of the
Maude strategy language to (simple) real-time systems. Those efforts motivated
the development of the intuitive timed strategy language proposed here.

The paper [6] uses rewrite rules and “strategies” to analyze timed automata
reachability using the rewriting framework ELAN [9]. The authors define rewrite
rules for manipulating “zones” of the timed automaton, and then define rewrite
strategies for various approaches to analyze these symbolic state spaces, whereas
we use strategies to explore subsets of system behaviors.

7 Concluding Remarks

In this paper we propose what we hope is a useful yet reasonably intuitive lan-
guage for defining execution strategies for real-time systems in Maude, allowing
us to perform most of the analysis methods supported by Real-Time Maude,
with user-defined discrete and timed strategies. We identify a number of in-
teresting execution strategies for real-time systems, including a “mixed” time
sampling strategy that should be ideal for explicit-state analysis of a large class
of distributed real-time systems, such as our round trip time protocol.

Our strategies are given a semantics in Maude and are therefore imple-
mented in Maude. A preliminary performance comparison between standard
Maude search and our strategy-implemented reachability analyses on the CASH
scheduling algorithm benchmark indicates that the latter are fairly competitive.

The benefits of this work are: (i) allowing the user to quickly and easily
analyze her real-time system under a wide range of different scenarios without
having to modify her model; (ii) providing much better time sampling strategies
for time-sampling-based explicit-state analysis than those provided by Real-Time
Maude; (iii) providing a convenient framework for quickly experimenting with
different strategies and analyses, before optimizing and hard-coding the most
promising into the Real-Time Maude tool; (iv) allowing us to analyze real-time
rewrite theories directly in Maude, instead of in Real-Time Maude; and (v)
supporting formal analysis with user-defined strategies for modeling languages
and formalisms for which Real-Time Maude provides a formal analysis backend.

Rubio et al. [35,36] have shown how to model check strategy-aware rewriting
logic specifications in their umaudemc tool, which allows model checking LTL and
CTL formulas, as well as to perform probabilistic and statistical model-checking,
on systems controlled by strategies. In future work we should support untimed
and timed temporal logic model checking combined with real-time strategies.
We should also combine symbolic analysis of real-time rewrite theories with
user-defined strategies, as we did in [2,3] for timed automata and Petri nets.

Acknowledgments. This work was supported by the NATO Science for Peace
and Security Programme through grant number G6133 (project SymSafe) and
by the PHC project Aurora AESIR.
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Teaching an Advanced Maude-based Formal
Methods Course in Oslo

Peter Csaba Ölveczky

Department of Informatics, University of Oslo, Oslo, Norway

Abstract. I have previously described an introductory Maude-based
formal methods course in Oslo. In this paper, I describe a follow-up
“advanced” rewriting-logic-based formal methods course. It consists of
three assignments, a few theoretical topics, and a number of topics for
student presentations that should illustrate the wide range of domains in
which formal methods, including rewriting logic, have been successfully
applied. I describe the course content, and evaluate the different topics
based on my own impressions, exams, and student feedback.

1 Introduction

I have in two invited papers [22,27] argued why rewriting logic [17] and its mod-
eling language and analysis tool Maude [12] should be an excellent choice for
teaching formal methods, according to criteria in, e.g., [1,28,9]. The reasons in-
clude: (i) modeling is fun object-oriented and functional programming, which
students tend to like; (ii) students can easily model and analyze key distributed
algorithms and protocols taught in other courses (e.g., databases, security, dis-
tributed systems, operating systems, etc.) so that such a formal methods course
can be well integrated with other courses in a CS curriculum; (iii) emphasis on
automated analyses; and (iv) one formal method covers a lot of ground.

I have taken my own medicine and have been teaching an introductory
Maude-based formal methods course at the University of Oslo for twenty years,
and have even written a textbook, Designing Reliable Distributed Systems: A
Formal Methods Approach Based on Executable Modeling in Maude [26], for
that course. The topics treated in such a first formal methods course are al-
most given: specifying data types, termination, confluence, and equational logic,
modeling distributed systems in an object-oriented way on a number of clas-
sic distributed systems applications, proving invariants, and introduce temporal
logic and temporal logic model checking (see Section 2).

Having covered most of the mandatory basics in the introductory course, we
have much more freedom in deciding what to teach in a follow-up “advanced”
course for MSc and PhD students; in addition, some third-year BSc students
also take the course, and tend to do well. In this paper I explain what I teach in
such an advanced 10-credit Maude-based course.

As a course intended to prepare students for their MSc. studies, one goal
is to make students read, understand, and present scientific papers, maybe for
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the first time. Another goal is to present fundamental formal methods concepts
and methods, and yet another goal is to show how formal methods can be used
on state-of-the-art problems and showcasing impressive applications of formal
methods. Furthermore, while the course is based on Maude to ground the new
stuff in something the students (should) know well, the intention is to teach
general formal methods topics instead of very rewriting-logic-specific ones.

In this paper, I give a brief background on the content of the basic Maude
course in Section 2 to present what the students already (should) know. In
Section 3 I present the topics taught in this advanced course. I try to explain why
I teach the topic, what we study in each topic, and then give a brief evaluation of
how well it works, based on own impressions, exams, and feedback from students.
Finally, I give some overall impressions and student feedback in Section 4

The goal of this paper is to: (i) present and motivate some topics which might
pique the interest of other on what to teach; (ii) share my experiences; and (iii)
first and foremost, I hope that this will inspire others, e.g., at WRLA 2024, to
discuss what they are teaching, and give me ideas of what I should teach in this
course the next time. I believe that many of us are using Maude in our teaching,
and sharing our experiences and ideas would greatly benefit our community.

2 Context

I briefly present the content of the basic Maude course at the University of Oslo
for two reasons: To give an impression of the students’ (presumed) background
and to show the content that therefore cannot be part of the advanced course. I
then present some practical information about the course and its students.

Introductory Maude-based Formal Methods Course in Oslo. The first
part of the book/course1 covers equational specification in Maude and the alge-
braic specification classics: term rewriting, termination (undecidability∗, progress
functions, the theory of simplification orders∗, and the basic path orders), conflu-
ence, equational logic and inductive theorems, and basic algebra/model theory∗.

The second part covers modeling distributed systems in rewriting logic and
analyzing them in Maude: rewriting logic, object-oriented specification in Maude,
and linear temporal logic (LTL) and LTL model checking in Maude. The sys-
tems modeled include transport protocols (“TCP,” alternating bit, and sliding
window), distributed systems classics (two-phase commit and well-known dis-
tributed mutual exclusion and leader election protocols), and security protocols
(we model and break NSPK with a simple Maude search).

Setting. This is a 10 ECTS credits course with one lecture—lasting between 90
and 135 minutes—per week for seven weeks, followed by student presentations.
The course is typically taken by around eight or nine reasonably talented stu-
dents. Surprisingly many of the students have not taken the basic Maude course,
1 Parts of the book not taught to second-year students are marked with ‘∗’.
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but tend to do well anyways, since the course starts with a lecture summarizing
the modeling and analysis of distributed systems in Maude. One limiting factor
is that, according to a recent survey, MSc students in this program spend on
average 23.6 hours per week on their studies.

3 Course Content

The course consists of the following three “components”:

1. Fundamental formal methods topics.
2. Three mandatory assignments.
3. A number of topics to be studied and presented by students.

The following sections outline the content and curriculum in each category.

3.1 Theoretical Topics

Real-Time Systems (1 lecture). Real-time systems can be modeled in rewrit-
ing logic as real-time rewrite theories [17], whose modeling and analysis are
supported by the Real-Time Maude tool [24,23,21]. The required reading is my
WRLA 2014 invited paper Real-Time Maude and its Applications [21].

We cover the basics, with small examples like breakable watches, populations,
and round trip time protocols, and explain how temporal logics can be extended
with time. We discuss the wide range of applications of Real-Time Maude to
distributed real-time systems, including two avionics applications, and its role
as a semantics framework and formal analysis backend to industrial modeling
languages such as subsets of Ptolemy II and the avionics standard AADL [20].

Evaluation. My students have not commented on this topic; they rather tend
to have opinions about applications. Real-time systems are fundamental, and
most modeling formalisms have extensions to the timed case. Somewhat surpris-
ingly, students tend to do better on other topics in the exam.

Probabilistic Systems (1 lecture). Probabilistic systems are key to reason
about probabilistic events (needed, e.g., to certify aircrafts) and for performance
estimation of distributed systems, where key “environment” parameters, such as
message delays, can be assumed to follow certain probability distributions.

In this topic, whose required reading is the papers PMaude: Rewrite-based
Specification Language for Probabilistic Object Systems [2] and PVeStA: A Par-
allel Statistical Model Checking and Quantitative Analysis Tool [3], we cover the
very basics: (Discrete time) Markov chains and Markov decision processes with
small examples. We discuss why finding probabilities amounts to finding the ex-
pected value of an expression over a behavior (the probability that Federer wins a
service game can be reduced to asking how many service games Fed is expected to
win if he plays hundred games). We discuss probabilistic model checking and sta-
tistical model checking and their differences. We exemplify probabilistic rewrite
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theories on small examples like Federer’s service game, England in penalty shoot-
outs, and human aging, and discuss how such probabilistic rewrite theories can
be simulated in Maude. We then look into probabilistic and stochastic temporal
logic, statistical model checking, and the Actor PMaude approach to almost-
surely obtaining purely probabilistic (real-time) systems (needed for statistical
model checking) by sampling message delays from continuous distributions.

Evaluation. This topics works well and covers a lot of conceptual ground
without going into much detail. To my chagrin the slides look more interesting
than the ones for real-time systems, and, surprisingly, students tend to do better
on this topic than on real-time systems.

Metaprogramming (2 lectures). Metaprogramming means that programs
can be seen as data that can be manipulated by programs (that . . . ). In our
setting it means (meta-)representing Maude modules/specifications as Maude
terms (of sort Module) that can be manipulated by Maude functions on such
terms. The curriculum on this topic is the appropriate chapter of the Maude
manual [11]. The first lecture covers meta-representing modules and defining
simple functions (union of two modules, add/remove a rule to/from a module,
check whether a module is lpo-terminating, and so on) on such modules. The
second lecture defines simple execution strategies using META-LEVEL operators
such as metaXapply, metaReduce, and metaSearch, which should culminate in
Assignment 2, where the students implement randomized simulation in Maude.

Evaluation. I have been very pleasantly surprised by how quickly and easily
students learn metaprogramming in Maude.

3.2 Mandatory Assignments

Assignment 1: Modeling and Analyzing a Broadcast Protocol. In their
first assignment, students model and analyze in Maude the reliable broadcast
protocol (RBP), but only for static networks, developed in 1995 by the group
of a leading researcher in distributed systems, J. J. Garcia-Luna at UCSC, and
published in the paper Reliable Broadcasting in Dynamic Networks [15].

Motivation. The goals of this assignment are to: (i) refresh or introduce
Maude modeling and analysis of distributed systems, and (ii) illustrate the use
and benefits of formal methods for distributed systems.

The protocol is very simple in the static network setting, and is therefore
a good refresher (or introduction) to Maude. More importantly, it illustrates
that a protocol description published in a good conference by a star researcher,
containing both precise-looking pseudo-code and a proof of correctness is (a)
highly ambiguous and full of missing assumptions, and (b) easily can be found
incorrect with simple Maude analysis.

Task. Model the RBP protocol (in the simplified static setting) in Maude,
using Maude’s object-based specification methods; discuss whether the protocol
description in the paper contains important implicit assumptions and/or ambi-
guities; define some suitable initial states and analyze RBP using Maude, and try
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to figure out whether or not the protocol is correct. Finally, the students should
discuss and compare the two description and validation methods, namely, formal
specification and automated model checking analysis versus informal descriptions
with simulations and hand proofs of correctness, and list some advantages and
disadvantages of each method.

Evaluation. This is an excellent task to start the course: it is easy to specify
RBP in Maude; there are many ambiguities and missing assumptions in the
paper; and a search for deadlocks in a three-node setting finds that the protocol
is incorrect, so that the “hand-proven” correctness theorem does not hold. It
illustrates on a very simple example the benefits of formal methods.

The main disadvantage is that the protocol is very old and almost too sim-
ple. It boils down to balancing between finding ambiguities and errors in proven
protocols of more modern and complex systems versus how much effort should
go into the task. One suggestion for a smallish but still more complex and mod-
ern protocol with the same issues could be the P-Store distributed transaction
system design [30], whose errors, ambiguities, and missing assumptions I point
out in [25]. However, P-Store requires modeling atomic broadcast.

I will definitely keep this assignment for the next time. It is a small and
illuminating introduction to Maude and the usefulness of formal methods.

Assignment 2: Metaprogramming in Maude. In this assignment the stu-
dents define new generic analysis methods for Maude. Lately, this analysis method
has been randomized simulation.

Motivation. The goal is to get experience with metaprogramming, and to
show that useful generic analysis methods easily can be implemented in this
way. It also prepares them for statistical model checking, which is covered later.

Task. Define a metalevel function for single randomized simulations, and then
a function for performing many randomized simulations. Test the commands on
small examples such as the football game [26] or the “whiteboard game.”

Evaluation. This task has a short and simple solution, and provides in about
half a page of Maude code a very useful simulation method not directly sup-
ported by Maude. Students tend do to quite well in metaprogramming, although
surprisingly few solve it using metaSearch, which seems to be the easiest and
most elegant way. I previously asked the students to program “iterative bounded
depth-first search,” but that was significantly more complicated; furthermore, it
seemed less well motivated since it performed worse than Maude search on the
NSPK protocol. I am happy with the current assignment.

Assignment 3: Maude Semantics for an Imperative Programming Lan-
guage. In this assignment the students define a Maude semantics/interpreter
for a small imperative toy language.

Motivation. Introduce Maude semantics of imperative programming languages,
how a formal semantics is important to clarify the meaning of programming
languages, and also how a high-level formal semantics allows us to quickly ex-
periment with different programming language designs and/or variations of the

206



Peter Csaba Ölveczky

meaning of different constructs. It should also prepare the ground for the topics
of programming language semantics in the K framework, and its use to define
and analyze C programs and Ethereum programs/contracts. In this assignment,
the students get acquainted with concepts such as cells and continuations.

Task. Define the Maude semantics of, and thereby an interpreter for, an
imperative toy programming language, called Borneo. A Borneo program is a set
of method definitions, with one method called main. A method may have input
parameters and local variables, and may return a value. The statements are:
assignments of an integer expression to a variable, call a method, if tests, while
loops, and sequencing. Expressions are simple integer and Boolean expressions.

The students should test their interpreter on Borneo imperative programs
with recursive functions for, e.g., primality testing, computing the factorial or a
Fibonacci number, and finding the greatest common divisor.

Evaluation. Balancing what language features to include with workload and
elegance is the main tradeoff in such a task. On the one hand, I really wanted
to include arrays, to introduce heaps, call by reference, memory management,
aliasing, and so on. However, after defining the semantics I thought it would
be slightly too much for a small assignment. It would also have been great to
introduce threads. Multithreaded programs without methods can be given a very
short and elegant semantics in Maude, which I already did for an exam in the
second-year course. With threads one can easily define multithreaded programs
for, e.g., mutual exclusion, and can use Maude model checking to great effect.

Apart from not introducing threads and/or arrays, another weakness with
this assignment is the lack of program verification. We do not introduce symbolic
reasoning in this course, which limits what we can do with our Maude semantics,
apart from running the programs on concrete inputs.

The assignment works well, but I should work more on finding the insight-vs-
effort/elegance sweet spot in terms of which imperative programming language
features to include.

3.3 Topics for Student Presentations

The purpose of the student presentations is to illustrate the wide range of ap-
plications of formal methods in general and of rewriting logic in particular.

The challenge here is to find a balance between the difficulty of the papers,
the level of detail (some concrete detail, like a few Maude rules are great to keep
it concrete), appeal of application domain, elegance, impact of results, and so on.
This part is obviously where the choice of possible topics is by far the greatest,
and where I especially would appreciate good suggestions!

Each topic is presented by one student in a 45-minute presentation.

Rewriting Logic Models of Cells and Biological Networks. Formal meth-
ods are increasingly used in systems biology, and SRI International had for many
years a project on using rewriting logic to model biological entities and processes.
In essence, mammalian cells and proteins are modeled in rewriting logic at a very
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pleasant level of abstraction. Rewrite rules then define how various proteins move
in and out of the various parts of a cell, and how they aggregate and transform.

The challenge is to find papers which present the rewriting logic models of a
cell as terms and the biological reactions as rewrite rules. For this requirement
of a more detailed view of the rewriting model, I have found that the early pa-
per Pathway Logic: Executable Models of Biological Networks [13] is an excellent
source which makes it easy to understand these models. This paper contains
signatures for representing the biological entities and fairly simple and under-
standable rewrite rules for modeling biological processes. The paper includes
understandable examples of Maude analysis, including LTL model checking (al-
though it is hard to understand why search was not sufficient). I also recommend
looking over Carolyn Talcott’s slides from ISR 2021 and José Meseguer’s slides
on Bio-Pathway Logic.

Evaluation. In general this topic works well; with some effort one can eas-
ily understand the Maude formalizations. The cited paper is very nice for this
purpose. Students tend to do very well on this topic in the exam.

Whereas there is a large amount of interesting topics to choose from for the
student presentations, I foresee that this topic will remain also the next time.

Modeling and Analyzing Protein Aggregation in the Brain. Continuing
with systems biology, the course also has a topic on modeling aggregation (pro-
teins grouping together) and dissolution of proteins in the brain, where large ag-
gregates (called Lewy bodies) are thought contribute to the onset of Parkinson’s
Disease. In the paper Using Probabilistic Strategies to Formalize and Compare
α-Synuclein Aggregation and Propagation under Different Scenarios [7], by my-
self, a then-PhD student of mine, and a researcher in medicine, we model how
proteins aggregate and dissolve in the brain, how they move in the brain, how
they cause the death of single neurons, and so on. We then extend the model with
different probabilities of applying the different rules, based on a person’s age,
predisposition to Parkinson’s, and intake of an experimental medicine, and per-
form randomized simulations to simulate the amount of Lewy bodies in different
brain regions over time in the three different scenarios.

Evaluation. This topic works well. The students have already had lectures
on both timed and probabilistic extensions of rewriting logic. Furthermore, the
rules are small and easy to understand, and so are the “weights” assigned to the
different rules in the different scenarios.

The reason for being skeptical is whether such modeling of single proteins
and neurons, and performing randomized simulations provide useful analyses of
brains. Furthermore, even with one coauthor being an accomplished researcher
in medicine at KU Leuven, some might question the credentials of the authors.

The paper works well for teaching, should be easily understandable, has
enough details for good examinations, and the students seem to be reasonable
happy with it. Nevertheless, because of the doubt about whether this represents
the best methodology in the field, and because having two systems biology topics
in the course might be too much, this topic might be replaced.
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Formal Semantics of C in K. Grigore Roşu and his collaborators have for a
number of years done very impressive work on defining the formal semantics of
programming languages in rewriting logic through their K framework. Among
the nice early papers, including survey papers and a strong paper on the seman-
tics of Java, the paper I thought fit best for this course is the POPL 2012 paper
An executable formal semantics of C with applications [14]. This paper gives a
brief background on language semantics definition in K, shows some examples
of such K rules, explains the various ways in which C is “undefined.” The paper
also gives nice and easily understandable concrete examples of the consequences
of such undefinedness. I did not find a paper on K that I thought would fit my
students, but fortunately this paper provides a very useful brief introduction and
intuition to the K way of defining programming language semantics.

Evaluation. This paper works well. It is easy to read and understand and gives
a short and useful introduction to K anno 2012. Although this introduction is
short, fortunately the students defined the Maude semantics of Borneo earlier in
the course (see above), and could therefore understand key K concepts such as
cells and continuations, etc. The only very minor disadvantage from the point
of view of this course is the lack of concrete rewriting logic code/specification.

Formal Semantics of the Ethereum Virtual Machine in K. Whereas the
C semantics paper [14] represented early use of K, that K framework now comes
with a compelling vision (and accompanying tool support) of how defining the
formal semantics of a programming language (which must be done anyways)
gives you K-semantics-based tools such as interpreter, debuggers, simulators,
model checkers, theorem provers, etc., for free.

One of the commercial application areas where this framework is used is elec-
tronic contracts on the (Ethereum) blockchain. The selected paper in this course
is KEVM: A Complete Formal Semantics of the Ethereum Virtual Machine [16].
In addition, the reading list for this topic also contains the following short pa-
pers about the K vision: The K Vision for the Future of Programming Language
Design and Analysis [10] and Roşu’s invited FSCD paper Formal Design, Im-
plementation and Verification of Blockchain Languages.

Evaluation. This topic works well, and does not require detailed knowledge
of K, but the vision is inspiring and should be easy to understand. The student
presenting this topic last year has chosen to formalize online trading platforms
in Maude for his MSc. The problem might be having two topics on K and pro-
gramming language semantics. If that must be reduced, I would keep this topic
instead of the C semantics (because of the sexier topic and “the vision thing”).

Cloud-based Transaction Systems in Maude. Maude and its accompany-
ing tools have been used to analyze and compare design options for a number of
industrial and academic transaction systems in the context of University of Illi-
nois Center for Assured Cloud Computing. Industrial systems included Google’s
Megastore, Apache Cassandra, and Apache Zookeeper, and sophisticated aca-
demic systems included UC Berkeley’s RAMP transaction systems and the P-
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Store design. The many papers on the topic are summarized in the paper Sur-
vivability: Design, Formal Modeling, and Validation of Cloud Storage Systems
using Maude [8], which was one of the required papers on this topic.

The reasons for selecting this topic includes: (i) use of Maude on large indus-
trial systems; (ii) illustrates how Maude can compare different design options
very early, to quickly discard proposed designs that do not seem improve the
system’s functionality or performance; (iii) students want computer science ap-
plications; and (iv) it shows how statistical model checking, treated earlier in
the course, can be used for early model-based performance estimation of differ-
ent design choices, and demonstrates the predictive power of these model-based
performance comparisons, which correspond very well with the performance of
their distributed implementations on industrial workloads.

Maybe the main reason for including this topic is that it gives me the excuse
to put the very nice paper How Amazon Web Services Uses Formal Methods [19]
on the list of required reading. This paper was written by engineers at Amazon
Web Services, and makes an excellent case for formal methods during the design
of sophisticated distributed systems.

Evaluation. Good applications summarized in one paper is nice, but in such
a course some concrete Maude detail/code would be welcome. But the results
are nice, and the Amazon paper is a gem, so I will probably keep this topic.

Breaking Internet Explorer Using Maude. One of the first “killer apps”
of Maude was finding previously unknown address bar and status bar attacks
in the Internet Explorer web browser. These vulnerabilities could cause you
to see the wrong url in the browser’s address bar, which has obvious security
implications. Ralf Sasse, then a PhD student in the Maude group at UIUC,
together with researchers at Microsoft, modeled in Maude how mouse moves
over, and clicks on, elements of the web page affected various components of
the browser. They then used Maude search to find unfortunate situations, like
an address bar with a different url than the web site displayed in the browser.
These findings are described in the required reading on this topic, A Systematic
Approach to Uncover Security Flaws in GUI Logic [18].

Evaluation. Even today this work remains one of the most significant ap-
plications of Maude, which obviously means that it is natural to include it in
such a course. The paper is very nice, but for teaching purposes it may suffer
from being a too substantial contribution that may not fit well with the desire
to understand easy-to-grasp smaller pieces of concrete code.

Breaking EMV Card Payment Using the Tamarin Prover. We go from
one of the most remarkable applications of Maude to one of the most remarkable
applications of formal methods: the work by David Basin, Ralf Sasse (again!),
and Jorge Toro on using the Tamarin prover to break the Europay/MasterCard/VISA
payment system. In their paper The EMV Standard: Break, Fix, Verify [6], they
demonstrate that you can bypass typing your PIN code when paying for expen-
sive items, and that you can actually “pay” without being charged. A Norwe-
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gian newspaper even made a video of their work (https://www.vgtv.no/video/
205022/ny-svindelmetode-slik-kan-de-kopiere-kortet-ditt-i-koeen).

I justified including this work into the course because the Tamarin prover
is based on multiset rewriting, and uses some components from Maude. This
topic therefore also included a quick understanding of the Tamarin prover; in
particular of its impressive array of applications, such as finding faults in the
5G standard, via the paper Tamarin: Verification of Large-Scale, Real-World,
Cryptographic Protocols [5].

Evaluation. Again, the amazing results mean that the (counter)examples are
large and difficult to grasp for someone not well versed in how payment protocols
work. Furthermore, reading papers in a different notation might be too much for
our students. I am therefore not sure whether this remarkable formal methods
application will be on the curriculum next time.

Monitoring. Monitoring, or runtime verification, is a recent popular scalable
formal method. I thought it would be interesting to introduce students to a
new kind of formal method, and selected the following overview paper of mon-
itoring, Introduction to runtime verification [4]. To justify including this topic
into a rewriting-logic-based course, I also included Rosu and Havelund’s paper
Rewriting-based techniques for runtime verification [29].

Evaluation. The overview paper was nice. The technical paper focused on
how reading an input affected the temporal logic formula being monitored. This
somehow seemed too little, and maybe not sufficiently interesting, for a presen-
tation, so this topic will probably not be given next time.

4 My Impressions and Student Feedback

My Impressions. One of my worries is that I focus too much on applications
and not enough on new formal methods concepts. What other general formal
methods concepts should I introduce? Symbolic analysis is important in com-
puter science in general, is well supported by Maude through both narrowing
and rewriting modulo SMT, and should be a good candidate if I can find small
but elegant and compelling applications. This would also make it easier to un-
derstand the Tamarin tool. What else? Theorem proving of various kinds?

Another kind of topic that might be interesting to explore is to see whether
Maude’s support for interacting with the external world through sockets and
operating systems calls can be exploited in some fun project. Suggestions and
experiences are most welcome!

Student Feedback. Since the course has only been given twice, each time to 8–
9 students, I do not have significant formal feedback. Based on the little feedback,
and discussions with the students, it seems that my worries about the course
being too easy and having too low workload do not hold. In general the students
like the focus on applications, and they do not miss more “theory.” I thought
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that including all this biology/neuroscience stuff would be popular, but students
prefer “less biology, more computer science.” The most popular topic(s) seem to
have been the formal semantics of C and KEVM parts; a number of students
even read up on blockchains when studying the KEVM paper. Students thought
that the papers of the most impressive applications, breaking EMV payments
with the Tamarin prover and breaking Internet Explorer with Maude, were “more
difficult to understand.” This is likely because these papers did not present a few
small and simple rewrite rules to ground their excellent stories.

Students liked studying and presenting research papers, which they have not
done in other courses in Oslo. They loved the first and third assignments, but
some thought that the second assignment was too small (and somewhat tricky).

5 Concluding Remarks

I have presented the contents and impressions and anecdotal student feedback on
a generally well-received “advanced” course in formal methods based on Maude
at the University of Oslo. I hope that this paper can inspire others teaching
Maude, and that it will generate interesting discussions at WRLA 2024, where
we can share our experiences in teaching Maude-based formal methods courses.

Acknowledgments. I thank the anonymous WRLA 2024 reviewers for their in-
sightful comments on a previous version of this paper, and I gratefully acknowl-
edge financial support by the NATO Science for Peace and Security Programme
through grant number G6133 (project SymSafe).
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Teaching Functional Programming and Program
Verification in CafeOBJ at JAIST

Kazuhiro Ogata[0000−0002−4441−3259]
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Abstract. I217(E) Functional Programming is one course given at
JAIST. The course teaches not only functional programming but also
program verification. It uses CafeOBJ as a programming language and
a program verification tool. This paper briefly describes some contents
taught in the course.

Keywords: CafeOBJ · proof scores · proof assistants · program verifi-
cation · functional programming.

1 Introduction

Although CafeOBJ [6, 21] is an algebraic specification language, it can be used as
an educational purpose first-order functional programming language. Moreover,
it is possible to write proof plans called proof scores [10] in CafeOBJ as well,
making it possible to conduct program verification. Therefore, it suffices to use
CafeOBJ for learning both functional programming and program verification,
and it is not necessary to learn any other proof assistants, such as Coq [3] and
Isabelle/HOL [16], to learn program verification. Thus, Futatsugi who has con-
ducted the development of CafeOBJ and the author (Ogata) of the present paper
made the decision that we would use CafeOBJ in a course (I217(E) Functional
Programming) at JAIST as a functional programming language and a program
verification tool from the educational year of 2008. Standard ML [13] was used
in the course before, and Gofer [14] was used in the course further before. The
main reason why Futatsugi and Ogata changed Standard ML to CafeOBJ as a
programming language used in the course was because it was enough to learn
CafeOBJ for both functional programming and program verification. Among
other reasons are as follows: (1) once students comprehend term rewriting, it is
possible for them to understand how programs written in CafeOBJ run, and (2)
both programs as formal systems specifications and proof scores can be written
in one language (CafeOBJ).

The course mainly targets Master’s students in JAIST who would like to get
Master’s Degree in Information Science. Because JAIST is a graduate university
and does not have any undergraduate programs, there are Master’s students in
JAIST whose backgraounds are different from Information Science/Computer
Science. It is the first time for many of them to learn functional programming as
well as program verification in the course. The course consists of 14 classes, each
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of which is given 100 minutes. Students of the course are evaluated by several
assignments and one written test. The topics of the 14 classes in educational year
2023 are as follows: 1. Sorts, Operators, Terms and Equations, 2. Modules, Order
Sorts and Lists of Natural Numbers, 3. Tern Rewriting, 4. Parametrized Modules,
5. Tables, 6. Infinite Lists, 7. Multisets, 8. A Programming Language Processor
– Interpreter, 9. A Programming Language Processor – Virtual Machine, 10. A
Programming Language Processor – Compiler, 11. Program Verification – Nat-
ural Numbers, 12. Program Verification – Lists, 13. Verification of Arithmetic
Calculator Compiler, and 14. Proof Assistant.

Functional programming is taught in classes 1 – 10, while program verification
is taught in classes 11 – 14. As shown, the topics are basic, and thus the course
is useful for Master’s students whose backgrounds are different from Information
Science/Computer Science. The course can be used as the first step toward al-
gebraic specification/verification techniques. In addition to the 14 classes, there
are a few laboratories where students tackle concrete quizzes about term rewrit-
ing and program verification. In JAIST, there are two classes in a week and one
time slot (100 minutes) called a tutorial hour, and one course is carried out in
about two months.

We describe part (classes 8 – 10) of what we teach as functional programming
and part (classes 11, 12 and 14) of what we teach as program verification at
JAIST. Some opinions given by some students who participated in the course
are also introduced. We suppose that readers are familiar with OBJ languages
and term rewriting to some extent. Note that CafeOBJ System Version 1.5.7 is
used in I217(E).

The main applications used are an interpreter, a virtual machine and a com-
piler for a Loop programming language, which are described in Section 2. In the
course at JAIST, we prove some properties of simple functions (programs) that
deal with Peano natural numbers, generic lists and Peano natural number lists
(generic lists instantiated with Peano natural numbers), which are described
in Section 3. Section 4 finally concludes the paper and mentions some future
directions.

2 Functional Programming

The main applications used are an interpreter, a virtual machine (VM) and
a compiler for a Loop programming language. The programming language is
called Minila that stands for a Mini-language. It consists of the empty statement,
assignment statements, conditional (if) statements, loop (while) statements, and
sequential compositional statements. The data available for Minila are natural
numbers only. Several operators for natural numbers can be used. We describe
the syntax, interpreter, VM and compiler for Minila.

2.1 Syntax of Minila

When implementing programming language processors in CafeOBJ, we do not
need to implement the front-end part, such as a parser. It suffices to define the
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syntax in CafeOBJ, which automatically generates the parser inside. The module
in which the syntax is defined is as follows:

mod! STM { pr(EXP) [Stm]
op estm : -> Stm {constr} .
op _:=_; : Var Exp -> Stm {constr} .
op if_{_}else{_} : Exp Stm Stm -> Stm {constr} .
op while_{_} : Exp Stm -> Stm {constr} .
op __ : Stm Stm -> Stm {constr prec: 60 id: estm l-assoc} . }

where EXP is a module in which expressions available for Minila are defined. A
way to handle exceptions, such as division by zero, uses the standard way based
on ordered sorts. For those who are interested in it, please refer to the website1
of the course (I217(E) Functional Programming).

2.2 Interpreter for Minila

We first implement the interpreter for expressions. If variables are not used in
a given expression, it is straightforward to interpret it. We need to comprehend
how to handle variables used in a given expression. We use the standard tech-
nique with the data structure called maps in Java [2] and called dictionaries in
Python [12] and Smalltalk-80 [11]. The data structure used in Minila is called
tables inspired from [13]. Such a table used in Minila is called an environment,
which may be called stores. We use variables as keys and natural numbers as
values. How to interpret a variable V under a given environment EV is as follows:

eq evalExp(V,EV) = lookup(EV,V) .

If EV has an entry whose key is V, lookup(EV,V) returns the natural number
associated with V. Otherwise, it returns errNat that represents an error or an
exception.

We then implement the interpreter for statements. How to interpret estm,
the empty statement, under a given environment EV is as follows:

eq eval(estm,EV) = EV .

where it just returns the given environment EV.
How to interpret V := E ;, the assignment statement, under a given envi-

ronment EV is as follows:

eq eval(V := E ;,EV) = evalAssign(V,evalExp(E,EV),EV) .
eq evalAssign(V,errNat,EV) = errEnv .
eq evalAssign(V,N,errEnv) = errEnv .
eq evalAssign(V,errNat,errEnv) = errEnv .
eq evalAssign(V,N,EV) = update(V,N,EV) .

1 www.jaist.ac.jp/~ogata/lecture/i217e/
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If the second parameter of evalAssign is errNat and/or the third parameter
of evalAssign is errEnv that also represents an error or an exception, then
evalAssign returns errEnv. Otherwise, it updates EV by associating V with N,
the natural number obtained by interpreting E under EV.

How to interpret while E {S1}, the while statement, under a given envi-
ronment EV is as follows:

eq eval(while E {S1},EV) = evalWhile(E,S1,EV) .
eq evalWhile(E,S,errEnv) = errEnv .
eq evalWhile(E,S,EV) = if evalExp(E,EV) == errNat then {errEnv}

else {if evalExp(E,EV) == 0
then {EV} else {evalWhile(E,S,eval(S,EV))} } .

If the third parameter of evalWhile is errEnv, then evalWhile returns errEnv.
Otherwise, it interprets E under EV. If the result is errNat, it returns errEnv. If
the result is 0, it returns EV. Otherwise, it interprets S under EV and recursively
calls evalWhile such that the first parameter is E, the second parameter is S and
the third parameter is the environment obtained by interpreting S under EV2.

How to interpret the other statements if E {S1} else {S2} and S1 S2
under a given environment can be defined in the standard way. The main function
that interprets S, a program written in Minila, is defined as follows:

eq interpret(S) = eval(S,empEnv).

where empEnv is the empty environment.
A program that calculates the positive integral part of the square root of

2× 1016 is written in Minila as follows:

x := n(20000000000000000) ; y := n(0) ; z := x ;
while y =!= z {

if ((z - y) % n(2)) === n(0) { tmp := y + (z - y) / n(2) ;}
else { tmp := y + ((z - y) / n(2)) + n(1) ; }
if tmp * tmp > x { z := tmp - n(1) ;}
else { y := tmp ; }

}

A natural number x is expressed as n(x) in Minila because we do not want
CafeOBJ to affect the natural number. Because CafeOBJ has the built-in op-
erators _==_ and _=_, _===_ is used as the equality predicate, where natural
number n(0) is treated as false, while any non-zero natural number is treated as
true. _=!=_ is the non-equality predicate. Let p4 be the program. interpret(p4)
returns the following:

((x , 20000000000000000) | ((y , 141421356) | ((z , 141421356) |
((tmp , 141421356) | empEnv)))):Env

where _|_ is the constructor of lists and the variable y (or z) stores the result.
2 The environment obtained may be errEnv. If so, errEnv is returned as the result of
interpreting the while statement.
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2.3 Virtual Machine (VM) for Minila

It is a stack machine that uses an environment and a program counter. Given
a sequence IL of instructions, the program counter whose number is 0 that
points to the very initial instruction, the empty stack empstk and the empty
environment empEnv, the main function run of VM is defined as follows:

eq run(IL) = exec(IL,0,empstk,empEnv) .

The function exec is defined as follows:

eq exec(IL,PC,errStack,E&E) = errEnv .
eq exec(IL,PC,S&E,errEnv) = errEnv .
eq exec(IL,PC,Stk,Env) = exec2(nth(IL,PC),IL,PC,Stk,Env) .

If the stack is errStack and/or the environment is errEnv, then exec returns
errEnv. Otherwise, the instruction pointed by the program counter is fetched
from the instruction list, and the program counter, stack and environment are up-
dated based on the instruction with exec2. Note that PCmay be out of the bound
of IL and if that is the case, namely that nth(IL,PC) returns errInstruct, then
exec2 returns errEnv.

Some of the equations that define exec2 are as follows:

eq exec2(errInstruct,IL,PC,S&E,E&E) = errEnv .
eq exec2(I&E,IL,PC,errStack,E&E) = errEnv .
eq exec2(I&E,IL,PC,S&E,errEnv) = errEnv .
eq exec2(push(N),IL,PC,Stk,EV) = exec(IL,PC + 1,N | Stk,EV) .
eq exec2(load(V),IL,PC,Stk,EV) = exec(IL,PC + 1,lookup(EV,V) | Stk,EV) .
eq exec2(store(V),IL,PC,empstk,EV) = errEnv .
eq exec2(store(V),IL,PC,N | Stk,EV) = exec(IL,PC + 1,Stk,update(EV,V,N)) .
eq exec2(multiply,IL,PC,empstk,EV) = errEnv .
eq exec2(multiply,IL,PC,N1 | empstk,EV) = errEnv .
eq exec2(multiply,IL,PC,N2 | N1 | Stk,EV) = exec(IL,PC + 1,N1 * N2 | Stk,EV) .
eq exec2(jump(N),IL,PC,Stk,EV) = exec(IL,PC + N,Stk,EV) .
eq exec2(bjump(N),IL,PC,Stk,EV) = exec(IL,sd(PC,N),Stk,EV) .
eq exec2(jumpOnCond(N),IL,PC,empstk,EV) = errEnv .
eq exec2(jumpOnCond(N),IL,PC,N1 | Stk,EV)

= if N1 == 0 then {exec(IL,PC + 1,Stk,EV)} else {exec(IL,PC + N,Stk,EV)} .
eq exec2(quit,IL,PC,Stk,EV) = EV .

If the first, fourth and/or fifth parameters of exec2 are errInstruct, errStack
and/or errEnv, respectively, then exec2 returns errEnv3. If the instruction is
push(N), PC is incremented, N is pushed onto the stack, EV does not change, and
exec2 is recursively called. If the instruction is load(V), PC is incremented, the
value obtained by lookup(EV,V) is pushed onto the stack, EV does not change,
and exec2 is recursively called. If the instruction is store(V), then if Stk is
3 The stack used stores not only natural numbers but also errNat. Once it stores
errNat, it rewrites to errStack.
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empty, errEnv is returned; otherwise, PC is incremented, the top value N is
deleted from Stk, EV is updated with V and N, and exec2 is recursively called.
When the instruction is multiply, if the stack has less than two values, exec2
returns errEnv; otherwise, PC is incremented, two values are popped out from
the stack, the multiplication of the two values is pushed back onto the stack,
EV does not change, and then exec2 is recursively called. When the instruction
is jump(N), N is added to PC and then exec2 is recursively called. When the
instruction is bjump(N), N is subtracted from PC (sd(PC,N)) and then exec2 is
recursively called. When the instruction is jumpOnCond(N), if the stack is empty,
errEnv is returned; otherwise, if N1, the top value popped from the stack, is 0,
PC is incremented, and if not, N is added to PC, and exec2 is then recursively
called. When the instruction is quit, then EV is returned as the result of exec2.

The other instructions divide, mod, add, minus, lessThan, greaterThan,
equal, notEqual, and and or are treated by exec2 in the standard way.

An instruction sequence that calculates 232 is as follows:

push(1) | store(x) | push(2) | store (y) | load(y) | load(y) | multiply |
store(y) | load(x) | push(2) | multiply | store(x) | push(64) | load(x) |
equal | jumpOnCond(2) | bjump(12) | quit | iln .

Let il2 be the instruction sequence. run(il2) returns the following:

((x , 64) | ((y , 18446744073709551616) | empEnv)):Env

where the Minila variable y stores the result.

2.4 Compiler for Minila

It translates a program p written in Minila into a list (or sequence) il of instruc-
tions for VM such that the result of run(il) is the same as that of interpret(p)
provided that p terminates. We first implement the compiler for expressions. If
variables are not used in a given expression, it is straightforward to translate it
into an instruction list. How to compile a variable V used in an expression is as
follows:

eq genForExp(V) = load(V) | iln .

How to compile V := E ; is as follows:

eq generate(V := E ;) = genForExp(E) @ (store(V) | iln) .

Note that when a program is compiled, it is not executed, and then it is not nec-
essary to take any environments into account. _@_ is the concatenation function.

How to compile while E {S1} is as follows:

eq generate(while E {S1})
= genForExp(E) @ (jumpOnCond(2) | jump(len(generate(S1)) + 2) | iln)

@ generate(S1) @ (bjump(len(genForExp(E)) + len(generate(S1)) + 2) | iln) .
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where len counts the number of elements in a given list.
How to compile the other statements estm, if E {S1} else {S2} and S1 S2

can be defined in the standard way. The main function that compiles S, a program
written in Minila, is defined as follows:

eq compile(S) = generate(S) @ (quit | iln) .

Note that the final instruction of the instruction list obtained by compiling a
program written in Minila is quit.

compile(p4) generates the following instruction list:

(push(20000000000000000) | (store(x) | (push(0) | (store(y) | (load(x) |
(store(z) | (load(y) | (load(z) | (notEqual | (jumpOnCond(2) | (jump(44) |
(load(z) | (load(y) | (minus | (push(2) | (mod | (push(0) | (equal |
(jumpOnCond(2) | (jump(10) | (load(y) | (load(z) | (load(y) | (minus |
(push(2) | (divide | (add | (store(tmp) | (jump(11) | (load(y) |
(load(z) | (load(y) | (minus | (push(2) | (divide | (add | (push(1) |
(add | (store(tmp) | (load(tmp) | (load(tmp) | (multiply | (load(x) |
(greaterThan | (jumpOnCond(2) | (jump(6) | (load(tmp) | (push(1) |
(minus | (store(z) | (jump(3) | (load(tmp) | (store(y) | (bjump(47) |
(quit | iln))))))))))))))))))))))))))))))))))))))))))))))))))))))):IList

run(compile(p4)) returns the following:

((x , 20000000000000000) | ((y , 141421356) | ((z , 141421356) |
((tmp , 141421356) | empEnv)))):Env

Note that the result is the same as the one returned by interpret(p4).

2.5 Summary

CafeOBJ as well as any members of the OBJ language family make it possible
for human users to define context-free grammars, generating a parser for the
grammar inside. It allows students to concentrate on learning how to implement
programming language processors, such as interpreters. The first who conducted
the research on algebraic semantics of imperative programming languages are
Goguen and Malcolm [8]. The research inspired Futatsugi and Ogata for im-
plementing the Minila language processors, and so did the book [7]. There is
the K framework [20] that has been designed to describe programming language
semantics. The author of the present paper thinks that K has been influenced
by the work done by Goguen and Malcolm. Note that neither the work done by
Goguen and Malcolm nor K handles VMs and compilers. The Minila processors
have been implemented in Java and Python as well for educational purpose4.

4 www.jaist.ac.jp/~ogata/lecture/i219/ & www.jaist.ac.jp/~ogata/lecture/i116/
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3 Program Verification

In the course at JAIST, we prove some properties of simple functions (programs)
that deal with Peano natural numbers, generic lists and Peano natural number
lists (generic lists instantiated with Peano natural numbers). Generic lists are
specified as follows:

mod! LIST1 (E :: TRIV) { [List]
op nil : -> List {constr}
op _|_ : Elt.E List -> List {constr} .
op _@_ : List List -> List .
op rev1 : List -> List .
op rev2 : List -> List .
op sr2 : List List -> List .
vars E E2 : Elt.E .
vars L1 L2 L3 : List .
eq (nil = E | L1) = false .
eq (E | L1 = E2 | L2) = (E = E2) and (L1 = L2) .
eq [@1] : nil @ L2 = L2 .
eq [@2] : (E | L1) @ L2 = E | (L1 @ L2) .
eq [r-1] : rev1(nil) = nil .
eq [r-2] : rev1(E | L1) = rev1(L1) @ (E | nil) .
eq [r2] : rev2(L1) = sr2(L1,nil) .
eq [sr2-1] : sr2(nil,L2) = L2 .
eq [r2-2] : sr2(E | L1,L2) = sr2(L1,E | L2) . }

TRIV is a built-in module in which only one sort Elt is defined. The reverse
function of lists is defined in two ways. rev1 is defined in the standard way,
while rev2 is defined in the tail recursive way. rev2 is more efficient than rev1
because rev2 does not use _@_ and can be converted into a loop program. If
the behavior of rev2 is different from that of rev1, however, we cannot use
rev2 instead of rev1. Thus, we should prove that for all lists L rev2(L) equals
rev1(L). It is straightforward to prove that _@_ is associative. After proving it,
we can modify LIST1 as follows:

mod! LIST2 (E :: TRIV) { ... op _@_ : List List -> List {assoc} . ...}

The only difference between LIST1 and LIST2 is the operator declaration of _@_.
_@_ is declared as assoc(iative) in LIST2.

3.1 Manual Proofs

Theorem 1. (∀L1 : List) rev1(L1) = rev2(L1)

Proof. By structural induction on L1. Let e be a fresh constant of Elt, and l1
be a fresh constant of List.
(i) Base case: What to show is rev1(nil) = rev2(nil).

rev1(nil)→ nil by (r1-1)
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rev2(nil)→ sr2(nil,nil) by (r2)
→ nil by (r2-1)

(ii) Induction case: What to show is rev1(e | l1) = rev2(e | l1).
We can use the following induction hypothesis: eq [IH] : rev1(l1) = rev2(l1) .

rev1(e | l1)→ rev1(l1) @ (e | nil) by (r1-2)
→ rev2(l1) @ (e | nil) by (IH)
→ sr2(l1,nil) @ (e | nil) by (r2)

rev2(e | l1)→ sr2(e | l1,nil) by (r2)
→ sr2(l1, e | nil) by (sr2-2)

Because both sr2(l1,nil) @ e | nil) and sr2(l1, e | nil) cannot be rewritten any
more, we need a lemma. We would like to show that the two terms are equal,
and then one possible way to conjecture a lemma is to just make them equal,
where fresh constants are replaced by variables that are universally quantified
as follows: eq [Lem1’] : sr2(L1,E | nil) = sr2(L1,nil) @ (E | nil) .
Although Lem1’ can be used to complete the proof of the induction case, it is
not straightforward to prove it because the part E | nil of Lem1’ is too specific,
namely that the part is a singleton list, and the induction hypothesis is not very
useful when we try to prove Lem1’. Hence, as is usual, we make it more generic
as follows: eq [Lem1] : sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) .
It is not hard to prove Lem1 by structural induction on L1. Lem1 makes it
possible to rewrite sr2(l1, e | nil) as follows:

→ . . .
→ sr2(l1, e | nil) by (sr2-2)
→ sr2(l1,nil) @ (e | nil) by (Lem1)

ut

We skip the proof of Lem1 that can be proved by structural induction on L1,
and the proof uses associativity of _@_ as a lemma.

3.2 Proof Scores

The proof score of Theorem 1 is as follows:

"Theorem 1. rev1(L1) = rev2(L1) for all L1:List
Proof of Theorem 1. By structural induction on L1.
(i) Base case"
open LIST2 .

-- check
red rev1(nil) = rev2(nil) .

close
"(ii) Induction case"
open LIST2 .

-- fresh constants
op l1 : -> List . op e : -> Elt .
-- induction hypothesis
eq rev1(l1) = rev2(l1) .
-- lemmas
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eq [Lem1] : sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) .
-- check
red rev1(e | l1) = rev2(e | l1) .

close
"End of Proof of Theorem 1"

open makes the module following it available, while close stops the use. In
an open-close fragment, we can add operators and equations, and can reduce a
term with red. CafeOBJ variables, such as L1 and E2, declared in such a module
can also be used in an open-close fragment. What is enclosed with " and " is a
comment, while open-close fragments are CafeOBJ code. A line from -- by the
end of the line is also a comment. The comments are part of the proof and very
important. Human users are responsible for how proofs are conducted, while
CafeOBJ is in charge of reduction (or computation). Feeding the proof score
into CafeOBJ, true is returned for each open-close fragment, meaning that the
proof of Theorem 1 has been successfully conducted, provided that Lem1 can be
proved. The proof score of Lem1 can be written likewise.

3.3 CafeOBJ Proof Assistant

We first prepare the following module in which Lem1 is declared:

mod! LIST2-SR2-P { pr(LIST2) vars E E2 : Elt.E . vars L1 L2 : List .
eq [Lem1] : sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) . }

The proof script of Theorem 1 is as follows:

"Theorem 1. rev1(L1) = rev2(L1) for all L1:List
Proof. By induction on L1."
open LIST2-SR2-P .
:goal {eq [ctrr] : rev1(L1) = rev2(L1) .}
:ind on (L1:List) :apply (si)
-- I. Base case
:apply (tc) :apply (rd)
-- II. Induction case
:apply (tc) :apply (rd)
close
"End of Proof of Theorem 1"

:goal declares a set of equations to prove. :ind on selects a variable on which
structural induction is applied. :apply (si) applies structural induction on
the variable chosen by :ind on. :apply (tc) replaces universally quantified
variables in the current goal with fresh constants. Even if there is no variable
left in the current goal, :apply (tc) can be safely used. :apply (rd) reduces
the current goal. If it reduces to true, the current goal has been discharged.
Feeding the proof script into CafeOBJ, the CafeOBJ proof assistant successfully
proves Theorem 1. The proof script of Lem1 can be written likewise.
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3.4 Summary

The pattern of the proof script :goal {...} :ind on {...} :apply (si)
:apply (tc) :apply (rd) :apply (tc) :apply (rd) can be used for the proof
of Lem1 and any other proof problems that are handled in lecture note 11 and lec-
ture note 12 of I217(E). I217(E) also teaches how the correctness of an arithmetic
expression compiler is formally verified with CafeOBJ, which is not described
in the present paper. The correctness means that for all arithmetic expression
e the result obtained by interpreting e is the same as that obtained by running
with a virtual machine the instruction sequence generated from e by a compiler.
It is not hard to write the proof scores for the correctness formal verification,
while it is not possible to tackle it with CafeOBJ proof assistant because it
lacks some functionalities. For example, it cannot handle an induction case such
that there are two or more induction hypotheses. We should improve CafeOBJ
proof assistant or build another proof assistant that are equipped with enough
functionalities to tackle the correctness formal verification.

4 Concluding Remarks and Future Directions

JAIST has a satellite campus in Tokyo called Tokyo satellite in addition to the
main campus. Almost all students in the main campus are ordinary students,
while all students in Tokyo satellite are working students. A student of Tokyo
satellite who attended I217(E) informed the author that she used Erlang [1] for
her job and did not know how programs written in Erlang were manipulated,
while she came to comprehend it by learning the technical contents of I217(E).

Several students who attended I217(E) in both the main campus and Tokyo
satellite let the author know that it is necessary to learn how proofs are written
by hand so as to learn how to do so, while it is also tedious to write proofs by
hand; proof scores are close to manual proofs and reduce the burden of reduction
(or computation); both manual proofs and proof scores are subject to human
errors, although proof scores reduce reduction errors; CafeOBJ proof assistant
prevents such errors from being introduced but it is not easy to follow proof
scripts for the proof assistant.

Daudier, Bao and Ogata [5] have formally verified the correctness of the
Minila compiler by writing proof scores in CafeOBJ: if any given program p
terminates, the result obtained by interpreting p is the same as that obtained by
running with the Minila virtual machine the instruction sequence generated from
p by the Minila compiler. Because the proof scores are lengthy and hard to follow,
we do not use the topic in I217(E). We should make the proof scores compact and
easier to follow, and would like to use the topic in I217(E). The most successful
research project on compiler correctness formal verification is CompCert [15].
Their approach is to check if the behaviors of two given programs are equal
because there are programs that basically run forever and never terminate. We
may want to adopt their approach.

CafeOBJ has the second implementation on top of Maude [4]: CafeInMaude [19].
CafeInMaude is equipped with a proof assistant CiMPA and a proof generator
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CiMPG(+F) [17, 18]. An automatic proof score generator IPSG [22] has also
been developed for CafeInMaude. IPSG has been used to tackle formal verifica-
tion of post-quantum hybrid SSH [23]. These tools would be used for I217(E) in
future instead of the first implementation of CafeOBJ.

Acknowledgments. The author would like to thank the anonymous reviewers
for their useful comments.
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A Higher-order Programming

Goguen [9] has demonstrated how higher-order programming can be carried
out with parametrized modules even without use of higher-order functions. The
present paper gives an example of higher-order programming in CafeOBJ.

mod! MAP(L1 :: PLIST,L2 :: PLIST,F :: FUN1(L1,L2)) {
op map : List.L1 -> List.L2
var E : Elt.L1 var L : List.L1
eq map(nil) = nil .
eq map(E | L) = f.F(E) | map(L) . }

PLIST is a module in which one sort List and two constructors _|_ and nil are
declared. FUN1 is a parameterized module that has two parameters (L1 :: PLIST
and L2 :: PLIST) and in which the following operator is declared:

op f : Elt.L1 -> Elt.L2

The operator map plays the higher-order function map, and the operator f.F
plays a function that is passed to the higher-order function map.

It is necessary to instantiate the parametrized module MAP. To this end, it
is required to prepare three modules that are given to the three parameters of
MAP, respectively, where the first two modules for the first two parameters may
be the same. We prepare one module NATLIST in which natural number lists are
specified for the first two parameters of MAP. We prepare the following module
for the third parameter of MAP:

mod! AP1 {
pr(NAT)
op double : Nat -> Nat
eq double(X:Nat) = 2 * X . }

We can now instantiate MAP with NATLIST and AP1 as follows:

mod! EX1 {
pr(MAP(L1 <= view to NATLIST {sort Elt -> Nat, sort List -> NatList},

L2 <= view to NATLIST {sort Elt -> Nat, sort List -> NatList},
F <= view to AP1 {op f -> double})) }

We can use map as follows:

open EX1 .
red map(0 | 1 | 2 | 3 | 4 | 5 | nil) .

close

(0 | (2 | (4 | (6 | (8 | (10 | nil)))))):NatList is returned as the re-
sult.

Higher-order programming with parameterized modules was taught as a sub-
topic in class 3 (Parametrized Modules) of the course. To let more students
whose backgrounds are different from Information Science/Computer Science
comprehend well the technical contents of the course, however, it is not taught
now in the course because there is no room for it.
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